Prediction of non-suicidal self-injury in adolescents at the family level using regression methods and machine learning

逻辑回归 随机森林 布里氏评分 家族史 心理学 接收机工作特性 毒物控制 临床心理学 机器学习 计算机科学 医学 环境卫生 放射科
作者
Si Chen Zhou,Zhaohe Zhou,Qi Tang,Ping Yu,Huijing Zou,Qian Liu,Xiao Qin Wang,Jianmei Jiang,Yang Zhou,Lianzhong Liu,Bing Xiang Yang,Dan Luo
出处
期刊:Journal of Affective Disorders [Elsevier]
被引量:3
标识
DOI:10.1016/j.jad.2024.02.039
摘要

Adolescent non-suicidal self-injury (NSSI) is a major public health issue. Family factors are significantly associated with NSSI in adolescents, while studies on forecasting NSSI at the family level are still limited. In addition to regression methods, machine learning (ML) techniques have been recommended to improve the accuracy of family-level risk prediction for NSSI. Using a dataset of 7967 students and their primary caregivers from a cross-sectional study, logistic regression model and random forest model were used to test the forecasting accuracy of NSSI predictions at the family level. Cross-validation was used to assess model prediction performance, including the area under the receiver operator curve (AUC), precision, Brier score, accuracy, sensitivity, specificity, positive predictive value and negative predictive value. The top three important family-related predictors within the random forest algorithm included family function (importance:42.66), family conflict (importance:42.18), and parental depression (importance:27.21). The most significant family-related risk predictors and protective predictors identified by the logistic regression model were family history of mental illness (OR:2.25) and help-seeking behaviors of mental distress from parents (OR:0.65), respectively. The AUCs of the two models, logistic regression and random forest, were 0.852 and 0.835, respectively. The key limitation is that this cross-sectional survey only enabled the authors to examine predictors that were considered to be proximal rather than distal. These findings highlight the significance of family-related factors in forecasting NSSI in adolescents. Combining both conventional statistical methods and ML methods to improve risk assessment of NSSI at the family level deserves attention.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
杀出个黎明举报daiyu求助涉嫌违规
刚刚
刚刚
还不错发布了新的文献求助10
刚刚
1秒前
小蘑菇应助华康采纳,获得10
2秒前
2秒前
稳重的白猫完成签到,获得积分10
2秒前
yufanhui应助迷你的含羞草采纳,获得10
2秒前
宝宝巴士驾驶员完成签到,获得积分10
3秒前
JC3250T完成签到,获得积分10
3秒前
4秒前
杀出个黎明举报ganchao1776求助涉嫌违规
4秒前
chen发布了新的文献求助10
5秒前
JC3250T发布了新的文献求助10
6秒前
6秒前
6秒前
sk应助还不错采纳,获得10
7秒前
8秒前
8秒前
9秒前
腼腆的乐安完成签到,获得积分10
9秒前
杀出个黎明举报hugo求助涉嫌违规
10秒前
玛瑙发布了新的文献求助10
10秒前
Kaysen92发布了新的文献求助10
11秒前
微笑的雪糕完成签到,获得积分10
11秒前
老北京发布了新的文献求助10
13秒前
眼睛大天抒完成签到,获得积分20
13秒前
13秒前
sci来完成签到,获得积分10
14秒前
温婉的凝丹完成签到 ,获得积分10
14秒前
rh1006完成签到,获得积分10
15秒前
15秒前
feng完成签到,获得积分10
15秒前
Wenfeifei发布了新的文献求助30
15秒前
老北京发布了新的文献求助10
15秒前
刘大可完成签到,获得积分10
16秒前
老北京发布了新的文献求助10
16秒前
16秒前
爸爸完成签到,获得积分10
17秒前
Kaysen92完成签到,获得积分10
17秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159909
求助须知:如何正确求助?哪些是违规求助? 2810952
关于积分的说明 7890034
捐赠科研通 2469969
什么是DOI,文献DOI怎么找? 1315243
科研通“疑难数据库(出版商)”最低求助积分说明 630771
版权声明 602012