Prediction of non-suicidal self-injury in adolescents at the family level using regression methods and machine learning

逻辑回归 随机森林 布里氏评分 家族史 心理学 接收机工作特性 毒物控制 临床心理学 机器学习 计算机科学 医学 环境卫生 放射科
作者
Si Chen Zhou,Zhaohe Zhou,Qi Tang,Ping Yu,Huijing Zou,Qian Liu,Xiao Qin Wang,Jianmei Jiang,Yang Zhou,Lianzhong Liu,Bing Xiang Yang,Dan Luo
出处
期刊:Journal of Affective Disorders [Elsevier BV]
卷期号:352: 67-75 被引量:12
标识
DOI:10.1016/j.jad.2024.02.039
摘要

Adolescent non-suicidal self-injury (NSSI) is a major public health issue. Family factors are significantly associated with NSSI in adolescents, while studies on forecasting NSSI at the family level are still limited. In addition to regression methods, machine learning (ML) techniques have been recommended to improve the accuracy of family-level risk prediction for NSSI. Using a dataset of 7967 students and their primary caregivers from a cross-sectional study, logistic regression model and random forest model were used to test the forecasting accuracy of NSSI predictions at the family level. Cross-validation was used to assess model prediction performance, including the area under the receiver operator curve (AUC), precision, Brier score, accuracy, sensitivity, specificity, positive predictive value and negative predictive value. The top three important family-related predictors within the random forest algorithm included family function (importance:42.66), family conflict (importance:42.18), and parental depression (importance:27.21). The most significant family-related risk predictors and protective predictors identified by the logistic regression model were family history of mental illness (OR:2.25) and help-seeking behaviors of mental distress from parents (OR:0.65), respectively. The AUCs of the two models, logistic regression and random forest, were 0.852 and 0.835, respectively. The key limitation is that this cross-sectional survey only enabled the authors to examine predictors that were considered to be proximal rather than distal. These findings highlight the significance of family-related factors in forecasting NSSI in adolescents. Combining both conventional statistical methods and ML methods to improve risk assessment of NSSI at the family level deserves attention.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
活力太兰发布了新的文献求助10
1秒前
2秒前
希望天下0贩的0应助左囧采纳,获得10
2秒前
小吴小吴发布了新的文献求助10
3秒前
挖掘机重新开启了tuetue文献应助
3秒前
dong应助俊逸的尔芙采纳,获得10
3秒前
Tina完成签到 ,获得积分10
3秒前
明理毛衣完成签到,获得积分20
4秒前
Ming完成签到,获得积分10
4秒前
Lshyong完成签到 ,获得积分10
5秒前
5秒前
5秒前
传奇3应助凌问晴采纳,获得10
6秒前
LONG发布了新的文献求助10
6秒前
壮观沛槐发布了新的文献求助30
6秒前
阳子发布了新的文献求助10
7秒前
所所应助美好焦采纳,获得10
8秒前
8秒前
8秒前
白尔德芙完成签到,获得积分10
9秒前
melon完成签到,获得积分10
9秒前
斯文败类应助小灰灰采纳,获得10
9秒前
黄风小圣完成签到 ,获得积分10
10秒前
脑洞疼应助大魔王采纳,获得10
10秒前
奋斗的忆之完成签到,获得积分10
10秒前
卡卡西应助谢新宇采纳,获得10
11秒前
亮晶晶完成签到,获得积分10
12秒前
阳子完成签到,获得积分10
12秒前
gejuqing发布了新的文献求助10
13秒前
ED发布了新的文献求助200
13秒前
美好焦完成签到,获得积分10
15秒前
俏皮的龙猫完成签到,获得积分10
15秒前
16秒前
16秒前
李健应助亮晶晶采纳,获得10
16秒前
奋斗雅香完成签到 ,获得积分10
16秒前
17秒前
18秒前
19秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952072
求助须知:如何正确求助?哪些是违规求助? 3497487
关于积分的说明 11087843
捐赠科研通 3228126
什么是DOI,文献DOI怎么找? 1784700
邀请新用户注册赠送积分活动 868855
科研通“疑难数据库(出版商)”最低求助积分说明 801203