Prediction of non-suicidal self-injury in adolescents at the family level using regression methods and machine learning

逻辑回归 随机森林 布里氏评分 家族史 心理学 接收机工作特性 毒物控制 临床心理学 机器学习 计算机科学 医学 环境卫生 放射科
作者
Si Chen Zhou,Zhaohe Zhou,Qi Tang,Ping Yu,Huijing Zou,Qian Liu,Xiao Qin Wang,Jianmei Jiang,Yang Zhou,Lianzhong Liu,Bing Xiang Yang,Dan Luo
出处
期刊:Journal of Affective Disorders [Elsevier]
卷期号:352: 67-75 被引量:10
标识
DOI:10.1016/j.jad.2024.02.039
摘要

Adolescent non-suicidal self-injury (NSSI) is a major public health issue. Family factors are significantly associated with NSSI in adolescents, while studies on forecasting NSSI at the family level are still limited. In addition to regression methods, machine learning (ML) techniques have been recommended to improve the accuracy of family-level risk prediction for NSSI. Using a dataset of 7967 students and their primary caregivers from a cross-sectional study, logistic regression model and random forest model were used to test the forecasting accuracy of NSSI predictions at the family level. Cross-validation was used to assess model prediction performance, including the area under the receiver operator curve (AUC), precision, Brier score, accuracy, sensitivity, specificity, positive predictive value and negative predictive value. The top three important family-related predictors within the random forest algorithm included family function (importance:42.66), family conflict (importance:42.18), and parental depression (importance:27.21). The most significant family-related risk predictors and protective predictors identified by the logistic regression model were family history of mental illness (OR:2.25) and help-seeking behaviors of mental distress from parents (OR:0.65), respectively. The AUCs of the two models, logistic regression and random forest, were 0.852 and 0.835, respectively. The key limitation is that this cross-sectional survey only enabled the authors to examine predictors that were considered to be proximal rather than distal. These findings highlight the significance of family-related factors in forecasting NSSI in adolescents. Combining both conventional statistical methods and ML methods to improve risk assessment of NSSI at the family level deserves attention.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小马甲应助陌路采纳,获得10
1秒前
1335804518完成签到 ,获得积分10
2秒前
2秒前
甜甜醉波完成签到,获得积分10
2秒前
科研通AI2S应助卷卷王采纳,获得10
3秒前
可爱的函函应助梦里采纳,获得10
3秒前
沐晴完成签到,获得积分10
4秒前
入夏完成签到,获得积分10
4秒前
4秒前
4秒前
苏州小北发布了新的文献求助10
5秒前
5秒前
snail完成签到,获得积分10
6秒前
劈里啪啦完成签到,获得积分10
6秒前
wanci应助Jasmine采纳,获得10
7秒前
aoxiangcaizi12完成签到,获得积分10
7秒前
ding应助通~采纳,获得30
8秒前
9秒前
Annie发布了新的文献求助10
9秒前
晨曦完成签到,获得积分10
10秒前
十一发布了新的文献求助10
10秒前
顾矜应助Peter采纳,获得30
11秒前
Ayanami完成签到,获得积分10
11秒前
英俊的铭应助ysl采纳,获得30
11秒前
酷波er应助范范采纳,获得10
11秒前
12秒前
Akim应助damian采纳,获得30
12秒前
12秒前
14秒前
番茄炒西红柿完成签到,获得积分10
15秒前
无限安蕾完成签到,获得积分10
15秒前
15秒前
飘逸蘑菇发布了新的文献求助10
16秒前
混沌完成签到,获得积分10
16秒前
16秒前
16秒前
16秒前
xg发布了新的文献求助10
18秒前
看看发布了新的文献求助10
19秒前
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794