亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Prediction of non-suicidal self-injury in adolescents at the family level using regression methods and machine learning

逻辑回归 随机森林 布里氏评分 家族史 心理学 接收机工作特性 毒物控制 临床心理学 机器学习 计算机科学 医学 环境卫生 放射科
作者
Si Chen Zhou,Zhaohe Zhou,Qi Tang,Ping Yu,Huijing Zou,Qian Liu,Xiao Qin Wang,Jianmei Jiang,Yang Zhou,Lianzhong Liu,Bing Xiang Yang,Dan Luo
出处
期刊:Journal of Affective Disorders [Elsevier BV]
卷期号:352: 67-75 被引量:22
标识
DOI:10.1016/j.jad.2024.02.039
摘要

Adolescent non-suicidal self-injury (NSSI) is a major public health issue. Family factors are significantly associated with NSSI in adolescents, while studies on forecasting NSSI at the family level are still limited. In addition to regression methods, machine learning (ML) techniques have been recommended to improve the accuracy of family-level risk prediction for NSSI. Using a dataset of 7967 students and their primary caregivers from a cross-sectional study, logistic regression model and random forest model were used to test the forecasting accuracy of NSSI predictions at the family level. Cross-validation was used to assess model prediction performance, including the area under the receiver operator curve (AUC), precision, Brier score, accuracy, sensitivity, specificity, positive predictive value and negative predictive value. The top three important family-related predictors within the random forest algorithm included family function (importance:42.66), family conflict (importance:42.18), and parental depression (importance:27.21). The most significant family-related risk predictors and protective predictors identified by the logistic regression model were family history of mental illness (OR:2.25) and help-seeking behaviors of mental distress from parents (OR:0.65), respectively. The AUCs of the two models, logistic regression and random forest, were 0.852 and 0.835, respectively. The key limitation is that this cross-sectional survey only enabled the authors to examine predictors that were considered to be proximal rather than distal. These findings highlight the significance of family-related factors in forecasting NSSI in adolescents. Combining both conventional statistical methods and ML methods to improve risk assessment of NSSI at the family level deserves attention.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
秾晓豆发布了新的文献求助10
刚刚
zyl完成签到 ,获得积分10
8秒前
王杉杉完成签到 ,获得积分10
10秒前
89完成签到,获得积分10
11秒前
追寻绮玉完成签到,获得积分10
13秒前
SiboN发布了新的文献求助10
13秒前
yuan完成签到,获得积分10
18秒前
wangermazi完成签到,获得积分0
29秒前
田様应助玖生采纳,获得10
30秒前
33秒前
梁33完成签到,获得积分10
38秒前
cccttt发布了新的文献求助10
38秒前
激动的55完成签到 ,获得积分10
44秒前
米其林完成签到,获得积分10
49秒前
54秒前
桐桐应助lililili采纳,获得10
55秒前
李桂芳发布了新的文献求助10
59秒前
1分钟前
zly完成签到 ,获得积分10
1分钟前
lililili发布了新的文献求助10
1分钟前
CipherSage应助阿迪采纳,获得10
1分钟前
1分钟前
vicky完成签到 ,获得积分10
1分钟前
redstone完成签到,获得积分10
1分钟前
阿迪发布了新的文献求助10
1分钟前
研友_VZG7GZ应助xuj1245采纳,获得10
1分钟前
qiuyu发布了新的文献求助10
1分钟前
酷波er应助SiboN采纳,获得10
1分钟前
1分钟前
米其林发布了新的文献求助20
1分钟前
阿迪完成签到,获得积分20
1分钟前
小蛇玩完成签到,获得积分10
1分钟前
李桂芳发布了新的文献求助10
1分钟前
无语的诗柳完成签到 ,获得积分10
1分钟前
科研通AI5应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
田様应助科研通管家采纳,获得10
1分钟前
1分钟前
称心妙竹应助科研通管家采纳,获得20
1分钟前
1分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
Refractory Castable Engineering 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5198303
求助须知:如何正确求助?哪些是违规求助? 4379340
关于积分的说明 13637951
捐赠科研通 4235367
什么是DOI,文献DOI怎么找? 2323346
邀请新用户注册赠送积分活动 1321439
关于科研通互助平台的介绍 1272342