Multi-level feature extraction and reconstruction for 3D MRI image super-resolution

计算机科学 人工智能 特征(语言学) 图像分辨率 迭代重建 卷积(计算机科学) 特征提取 模式识别(心理学) 计算机视觉 残余物 图像质量 图像(数学) 人工神经网络 算法 语言学 哲学
作者
Hongbi Li,Yuanyuan Jia,Huazheng Zhu,Baoru Han,Jinglong Du,Yanbing Liu
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:171: 108151-108151 被引量:3
标识
DOI:10.1016/j.compbiomed.2024.108151
摘要

Magnetic resonance imaging (MRI) is an essential radiology technique in clinical diagnosis, but its spatial resolution may not suffice to meet the growing need for precise diagnosis due to hardware limitations and thicker slice thickness. Therefore, it is crucial to explore suitable methods to increase the resolution of MRI images. Recently, deep learning has yielded many impressive results in MRI image super-resolution (SR) reconstruction. However, current SR networks mainly use convolutions to extract relatively single image features, which may not be optimal for further enhancing the quality of image reconstruction. In this work, we propose a multi-level feature extraction and reconstruction (MFER) method to restore the degraded high-resolution details of MRI images. Specifically, to comprehensively extract different types of features, we design the triple-mixed convolution by leveraging the strengths and uniqueness of different filter operations. For the features of each level, we then apply deconvolutions to upsample them separately at the tail of the network, followed by the feature calibration of spatial and channel attention. Besides, we also use a soft cross-scale residual operation to improve the effectiveness of parameter optimization. Experiments on lesion-free and glioma datasets indicate that our method obtains superior quantitative performance and visual effects when compared with state-of-the-art MRI image SR methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
852应助龙傲天采纳,获得10
刚刚
小小高完成签到 ,获得积分10
1秒前
桐桐应助温柔的依珊采纳,获得10
1秒前
AXDBB完成签到,获得积分10
2秒前
2秒前
沉潜发布了新的文献求助10
2秒前
lisa完成签到 ,获得积分10
2秒前
xuexue发布了新的文献求助10
2秒前
4秒前
4秒前
刘刘大顺发布了新的文献求助10
5秒前
Singularity应助粥粥爱糊糊采纳,获得10
5秒前
俊秀的幼枫完成签到,获得积分10
5秒前
木子发布了新的文献求助20
5秒前
果实发布了新的文献求助10
5秒前
大模型应助Jefferson采纳,获得10
6秒前
EricaLee9812发布了新的文献求助10
7秒前
Timing侠发布了新的文献求助10
8秒前
中宝驳回了打打应助
8秒前
大白不白发布了新的文献求助10
8秒前
8秒前
10秒前
小鱼完成签到,获得积分10
10秒前
10秒前
10秒前
11秒前
dadada完成签到,获得积分10
11秒前
11秒前
11秒前
小锦章完成签到,获得积分10
11秒前
12秒前
小马甲应助心海采纳,获得10
12秒前
艺涵完成签到,获得积分10
12秒前
bkagyin应助IanYoung71采纳,获得10
12秒前
iii完成签到,获得积分10
12秒前
12秒前
13秒前
龙傲天发布了新的文献求助10
13秒前
hq6045x完成签到,获得积分10
13秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960905
求助须知:如何正确求助?哪些是违规求助? 3507164
关于积分的说明 11134060
捐赠科研通 3239538
什么是DOI,文献DOI怎么找? 1790202
邀请新用户注册赠送积分活动 872199
科研通“疑难数据库(出版商)”最低求助积分说明 803149