Integrative Multianalytical Model Based on Novel Plasma Protein Biomarkers for Distinguishing Lung Adenocarcinoma and Benign Pulmonary Nodules

腺癌 诊断模型 医学 放射科 内科学 计算机科学 癌症 数据挖掘
作者
Xue Zhang,Longtao Ji,Man Liu,Jiaqi Li,Hao Sun,Feifei Liang,Yutong Zhao,Zhi Wang,Ting Yang,Yulin Wang,Qiufang Si,Renle Du,Liping Dai,Songyun Ouyang
出处
期刊:Journal of Proteome Research [American Chemical Society]
卷期号:23 (1): 277-288 被引量:2
标识
DOI:10.1021/acs.jproteome.3c00551
摘要

Given the pressing clinical problem of making a decision in diagnosis for subjects with pulmonary nodules, we aimed to discover novel plasma protein biomarkers for lung adenocarcinoma (LUAD) and benign pulmonary nodules (BPNs) and then develop an integrative multianalytical model to guide the clinical management of LUAD and BPN patients. Through label-free quantitative plasma proteomic analysis (data are available via ProteomeXchange with identifier PXD046731), 12 differentially expressed proteins (DEPs) in LUAD and BPN were screened. The diagnostic abilities of DEPs were validated in two independent validation cohorts. The results showed that the levels of three candidate proteins (PRDX2, PON1, and APOC3) were lower in the plasma of LUAD than in BPN. The three candidate proteins were combined with three promising computed tomography indicators (spiculation, vascular notch sign, and lobulation) and three traditional markers (CEA, CA125, and CYFRA21-1) to construct an integrative multianalytical model, which was effective in distinguishing LUAD from BPN, with an AUC of 0.904, a sensitivity of 81.44%, and a specificity of 90.14%. Moreover, the model possessed impressive diagnostic performance between early LUADs and BPNs, with the AUC, sensitivity, specificity, and accuracy of 0.868, 65.63%, 90.14%, and 82.52%, respectively. This model may be a useful auxiliary diagnostic tool for LUAD and BPN by achieving a better balance of sensitivity and specificity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
王冬越完成签到 ,获得积分10
刚刚
赘婿应助Survivor采纳,获得10
1秒前
2秒前
2秒前
fangyuan应助科研通管家采纳,获得10
2秒前
Return应助科研通管家采纳,获得10
2秒前
tiptip应助科研通管家采纳,获得10
3秒前
3秒前
共享精神应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
4秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
ht完成签到,获得积分10
5秒前
5秒前
科研通AI6应助杨文彬采纳,获得10
6秒前
6秒前
6秒前
7秒前
______完成签到,获得积分10
7秒前
迷路雨寒发布了新的文献求助10
8秒前
8秒前
WGS发布了新的文献求助10
9秒前
禾火发布了新的文献求助10
9秒前
10秒前
10秒前
薛变霞发布了新的文献求助10
11秒前
11秒前
zhiqq发布了新的文献求助10
13秒前
14秒前
SciGPT应助qingjiu采纳,获得10
14秒前
一星如月发布了新的文献求助10
14秒前
15秒前
15秒前
dw发布了新的文献求助10
15秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5693788
求助须知:如何正确求助?哪些是违规求助? 5094331
关于积分的说明 15212383
捐赠科研通 4850595
什么是DOI,文献DOI怎么找? 2601854
邀请新用户注册赠送积分活动 1553652
关于科研通互助平台的介绍 1511661