已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Somatisation Disorder Detection via Speech: Introducing a Self-Supervised Learning Model

人工智能 机器学习 计算机科学 召回 监督学习 任务(项目管理) 半监督学习 自然语言处理 语音识别 心理学 认知心理学 人工神经网络 经济 管理
作者
Zhihao Bao,Kun Qian,Zhonghao Zhao,Mengkai Sun,Ruolan Huang,Dewen Xu,Bin Hu,Yoshiharu Yamamoto,Björn W. Schuller
标识
DOI:10.1109/embc40787.2023.10340705
摘要

With the depressive psychiatric disorders becoming more common, people are gradually starting to take it seriously. Somatisation disorders, as a general mental disorder, are rarely accurately identified in clinical diagnosis for its specific nature. In the previous work, speech recognition technology has been successfully applied to the task of identifying somatisation disorders on the Shenzhen Somatisation Speech Corpus. Nevertheless, there is still a scarcity of labels for somatisation disorder speech database. The current mainstream approaches in the speech recognition heavily rely on the well labelled data. Compared to supervised learning, self-supervised learning is able to achieve the same or even better recognition results while reducing the reliance on labelled samples. Moreover, self-supervised learning can generate general representations without the need for human hand-crafted features depending on the different recognition tasks. To this end, we apply self-supervised learning pre-trained models to solve few-labelled somatisation disorder speech recognition. In this study, we compare and analyse the results of three self-supervised learning models (contrastive predictive coding, wav2vec and wav2vec 2.0). The best result of wav2vec 2.0 model achieves 77.0 % unweighted average recall and is significantly better than CPC (p < .005), performing better than the benchmark of the supervised learning model.Clinical relevance— This work proposed a self-supervised learning model to resolve the few-labelled SD speech data, which can be well used for helping psychiatrists with clinical assistant to diagnosis. With this model, psychiatrists no longer need to spend a lot of time labelling SD speech data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爰爰完成签到,获得积分10
1秒前
Cookie发布了新的文献求助10
1秒前
kevinqpp完成签到,获得积分10
2秒前
ynl完成签到 ,获得积分10
3秒前
小秃子完成签到,获得积分10
5秒前
ycp完成签到,获得积分10
5秒前
orixero应助哈哈哈不知道呀采纳,获得10
5秒前
收皮皮完成签到 ,获得积分10
6秒前
6秒前
Akim应助Jinyang采纳,获得10
8秒前
伴夏完成签到 ,获得积分10
8秒前
wol007完成签到 ,获得积分10
9秒前
zsmj23完成签到 ,获得积分0
9秒前
紫霃发布了新的文献求助10
11秒前
积极的白羊完成签到 ,获得积分10
11秒前
Cookie完成签到,获得积分20
16秒前
英姑应助Hwj采纳,获得10
16秒前
打打应助hvgjgfjhgjh采纳,获得10
17秒前
18秒前
22秒前
杂货铺老板娘完成签到,获得积分10
23秒前
Jinyang发布了新的文献求助10
24秒前
Matberry完成签到 ,获得积分10
26秒前
27秒前
隔壁巷子里的劉完成签到 ,获得积分10
29秒前
29秒前
hvgjgfjhgjh完成签到,获得积分10
30秒前
坦率巧曼完成签到 ,获得积分10
30秒前
ding应助Jinyang采纳,获得10
30秒前
畅快自行车完成签到,获得积分10
31秒前
酷波er应助顺利巨人采纳,获得10
31秒前
尔白完成签到 ,获得积分10
31秒前
31秒前
hvgjgfjhgjh发布了新的文献求助10
32秒前
思源应助凡士林采纳,获得10
35秒前
紫霃完成签到,获得积分10
36秒前
37秒前
英姑应助TTTHANKS采纳,获得10
37秒前
呼呼完成签到,获得积分10
41秒前
善学以致用应助11122采纳,获得10
42秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 640
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573165
求助须知:如何正确求助?哪些是违规求助? 4659310
关于积分的说明 14724324
捐赠科研通 4599135
什么是DOI,文献DOI怎么找? 2524124
邀请新用户注册赠送积分活动 1494675
关于科研通互助平台的介绍 1464693