Somatisation Disorder Detection via Speech: Introducing a Self-Supervised Learning Model

人工智能 机器学习 计算机科学 召回 监督学习 任务(项目管理) 半监督学习 自然语言处理 语音识别 心理学 认知心理学 人工神经网络 管理 经济
作者
Zhihao Bao,Kun Qian,Zhonghao Zhao,Mengkai Sun,Ruolan Huang,Dewen Xu,Bin Hu,Yoshiharu Yamamoto,Björn W. Schuller
标识
DOI:10.1109/embc40787.2023.10340705
摘要

With the depressive psychiatric disorders becoming more common, people are gradually starting to take it seriously. Somatisation disorders, as a general mental disorder, are rarely accurately identified in clinical diagnosis for its specific nature. In the previous work, speech recognition technology has been successfully applied to the task of identifying somatisation disorders on the Shenzhen Somatisation Speech Corpus. Nevertheless, there is still a scarcity of labels for somatisation disorder speech database. The current mainstream approaches in the speech recognition heavily rely on the well labelled data. Compared to supervised learning, self-supervised learning is able to achieve the same or even better recognition results while reducing the reliance on labelled samples. Moreover, self-supervised learning can generate general representations without the need for human hand-crafted features depending on the different recognition tasks. To this end, we apply self-supervised learning pre-trained models to solve few-labelled somatisation disorder speech recognition. In this study, we compare and analyse the results of three self-supervised learning models (contrastive predictive coding, wav2vec and wav2vec 2.0). The best result of wav2vec 2.0 model achieves 77.0 % unweighted average recall and is significantly better than CPC (p < .005), performing better than the benchmark of the supervised learning model.Clinical relevance— This work proposed a self-supervised learning model to resolve the few-labelled SD speech data, which can be well used for helping psychiatrists with clinical assistant to diagnosis. With this model, psychiatrists no longer need to spend a lot of time labelling SD speech data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
DUANYALI发布了新的文献求助30
刚刚
刚刚
Hsia完成签到,获得积分10
1秒前
Drwang完成签到,获得积分10
1秒前
易达完成签到,获得积分10
2秒前
茶茶完成签到,获得积分10
3秒前
成绩好发布了新的文献求助10
3秒前
4秒前
4秒前
科目三应助大力的含卉采纳,获得10
4秒前
5秒前
6秒前
科研通AI5应助等待戈多采纳,获得10
6秒前
聪明藏今完成签到,获得积分10
7秒前
Ayiiiii完成签到 ,获得积分10
8秒前
科研通AI5应助clown采纳,获得10
9秒前
9秒前
NexusExplorer应助甜甜的梦菡采纳,获得10
9秒前
茶茶发布了新的文献求助10
9秒前
与光完成签到 ,获得积分10
10秒前
hehe0086完成签到,获得积分10
10秒前
edsenone发布了新的文献求助10
10秒前
liuliu关注了科研通微信公众号
11秒前
11秒前
12秒前
俊秀的剑封完成签到,获得积分10
12秒前
DTL哈哈完成签到 ,获得积分10
12秒前
思源应助reoer采纳,获得30
12秒前
13秒前
13秒前
13秒前
13秒前
xjh完成签到,获得积分10
13秒前
小何发布了新的文献求助10
14秒前
FashionBoy应助晓晓采纳,获得10
14秒前
刚少kk完成签到,获得积分10
14秒前
Owen应助香蕉不言采纳,获得10
15秒前
15秒前
姜姜姜发布了新的文献求助10
15秒前
柔弱丝袜完成签到,获得积分10
15秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
工业结晶技术 880
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3490684
求助须知:如何正确求助?哪些是违规求助? 3077465
关于积分的说明 9148997
捐赠科研通 2769686
什么是DOI,文献DOI怎么找? 1519873
邀请新用户注册赠送积分活动 704375
科研通“疑难数据库(出版商)”最低求助积分说明 702135