Somatisation Disorder Detection via Speech: Introducing a Self-Supervised Learning Model

人工智能 机器学习 计算机科学 召回 监督学习 任务(项目管理) 半监督学习 自然语言处理 语音识别 心理学 认知心理学 人工神经网络 管理 经济
作者
Zhihao Bao,Kun Qian,Zhonghao Zhao,Mengkai Sun,Ruolan Huang,Dewen Xu,Bin Hu,Yoshiharu Yamamoto,Björn W. Schuller
标识
DOI:10.1109/embc40787.2023.10340705
摘要

With the depressive psychiatric disorders becoming more common, people are gradually starting to take it seriously. Somatisation disorders, as a general mental disorder, are rarely accurately identified in clinical diagnosis for its specific nature. In the previous work, speech recognition technology has been successfully applied to the task of identifying somatisation disorders on the Shenzhen Somatisation Speech Corpus. Nevertheless, there is still a scarcity of labels for somatisation disorder speech database. The current mainstream approaches in the speech recognition heavily rely on the well labelled data. Compared to supervised learning, self-supervised learning is able to achieve the same or even better recognition results while reducing the reliance on labelled samples. Moreover, self-supervised learning can generate general representations without the need for human hand-crafted features depending on the different recognition tasks. To this end, we apply self-supervised learning pre-trained models to solve few-labelled somatisation disorder speech recognition. In this study, we compare and analyse the results of three self-supervised learning models (contrastive predictive coding, wav2vec and wav2vec 2.0). The best result of wav2vec 2.0 model achieves 77.0 % unweighted average recall and is significantly better than CPC (p < .005), performing better than the benchmark of the supervised learning model.Clinical relevance— This work proposed a self-supervised learning model to resolve the few-labelled SD speech data, which can be well used for helping psychiatrists with clinical assistant to diagnosis. With this model, psychiatrists no longer need to spend a lot of time labelling SD speech data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
安屿完成签到 ,获得积分10
1秒前
归仔完成签到,获得积分10
1秒前
1秒前
Orange应助李丽采纳,获得10
2秒前
认真初之发布了新的文献求助30
2秒前
王大力完成签到,获得积分10
2秒前
传奇3应助务实雪珍采纳,获得10
2秒前
刘丰铭发布了新的文献求助10
3秒前
1234完成签到,获得积分10
3秒前
BowieHuang应助震动的高烽采纳,获得10
3秒前
3秒前
自然黄豆发布了新的文献求助10
3秒前
555完成签到,获得积分20
3秒前
完美世界应助喜悦一德采纳,获得10
3秒前
yqsf789发布了新的文献求助10
3秒前
洪亭完成签到 ,获得积分10
4秒前
左左蕊完成签到 ,获得积分10
4秒前
嘉博学长完成签到,获得积分10
5秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
万能图书馆应助edtaa采纳,获得10
5秒前
5秒前
斯文败类应助Leon采纳,获得10
6秒前
wenchong完成签到,获得积分10
6秒前
6秒前
个性小熊猫完成签到,获得积分10
7秒前
David123发布了新的文献求助10
7秒前
土土完成签到 ,获得积分10
8秒前
fhz关闭了fhz文献求助
8秒前
后陡门小学生完成签到 ,获得积分10
8秒前
8秒前
8秒前
唯心止论完成签到,获得积分10
9秒前
希望天下0贩的0应助洪亭采纳,获得10
9秒前
糖炒李子完成签到,获得积分10
9秒前
9秒前
9秒前
L山间葱发布了新的文献求助10
10秒前
yuan完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608504
求助须知:如何正确求助?哪些是违规求助? 4693127
关于积分的说明 14876947
捐赠科研通 4717761
什么是DOI,文献DOI怎么找? 2544250
邀请新用户注册赠送积分活动 1509316
关于科研通互助平台的介绍 1472836