Somatisation Disorder Detection via Speech: Introducing a Self-Supervised Learning Model

人工智能 机器学习 计算机科学 召回 监督学习 任务(项目管理) 半监督学习 自然语言处理 语音识别 心理学 认知心理学 人工神经网络 管理 经济
作者
Zhihao Bao,Kun Qian,Zhonghao Zhao,Mengkai Sun,Ruolan Huang,Dewen Xu,Bin Hu,Yoshiharu Yamamoto,Björn W. Schuller
标识
DOI:10.1109/embc40787.2023.10340705
摘要

With the depressive psychiatric disorders becoming more common, people are gradually starting to take it seriously. Somatisation disorders, as a general mental disorder, are rarely accurately identified in clinical diagnosis for its specific nature. In the previous work, speech recognition technology has been successfully applied to the task of identifying somatisation disorders on the Shenzhen Somatisation Speech Corpus. Nevertheless, there is still a scarcity of labels for somatisation disorder speech database. The current mainstream approaches in the speech recognition heavily rely on the well labelled data. Compared to supervised learning, self-supervised learning is able to achieve the same or even better recognition results while reducing the reliance on labelled samples. Moreover, self-supervised learning can generate general representations without the need for human hand-crafted features depending on the different recognition tasks. To this end, we apply self-supervised learning pre-trained models to solve few-labelled somatisation disorder speech recognition. In this study, we compare and analyse the results of three self-supervised learning models (contrastive predictive coding, wav2vec and wav2vec 2.0). The best result of wav2vec 2.0 model achieves 77.0 % unweighted average recall and is significantly better than CPC (p < .005), performing better than the benchmark of the supervised learning model.Clinical relevance— This work proposed a self-supervised learning model to resolve the few-labelled SD speech data, which can be well used for helping psychiatrists with clinical assistant to diagnosis. With this model, psychiatrists no longer need to spend a lot of time labelling SD speech data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助zzt采纳,获得10
1秒前
滴滴答答发布了新的文献求助10
1秒前
idrees完成签到,获得积分10
1秒前
Boyce完成签到,获得积分10
2秒前
2秒前
qi88完成签到 ,获得积分10
2秒前
云溪完成签到,获得积分10
3秒前
Jenny完成签到 ,获得积分10
3秒前
孔雀翎完成签到,获得积分10
3秒前
Big胆完成签到,获得积分10
4秒前
一顿鸡米花完成签到,获得积分10
4秒前
求助人员发布了新的文献求助100
5秒前
情怀应助ycy采纳,获得10
5秒前
kilin发布了新的文献求助10
5秒前
dd发布了新的文献求助10
6秒前
星际完成签到,获得积分10
6秒前
陈栋炜完成签到,获得积分10
8秒前
9秒前
海天完成签到,获得积分10
9秒前
无情的镜子完成签到,获得积分10
9秒前
今天是周六完成签到,获得积分10
9秒前
幸福的醉山完成签到,获得积分10
9秒前
机灵的胡萝卜完成签到,获得积分10
10秒前
CLZ完成签到 ,获得积分10
10秒前
Jiny完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
11秒前
丘比特应助lujiao采纳,获得10
11秒前
YG完成签到,获得积分10
11秒前
浮游应助滴滴答答采纳,获得10
11秒前
浮游应助滴滴答答采纳,获得10
11秒前
浮游应助滴滴答答采纳,获得10
12秒前
浮游应助滴滴答答采纳,获得10
12秒前
neinei完成签到,获得积分10
12秒前
巫马沛春完成签到,获得积分10
12秒前
Mercury完成签到,获得积分10
12秒前
12秒前
12秒前
认真的一刀完成签到,获得积分0
12秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
化妆品原料学 1000
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645431
求助须知:如何正确求助?哪些是违规求助? 4768803
关于积分的说明 15028908
捐赠科研通 4804012
什么是DOI,文献DOI怎么找? 2568656
邀请新用户注册赠送积分活动 1525914
关于科研通互助平台的介绍 1485570