Somatisation Disorder Detection via Speech: Introducing a Self-Supervised Learning Model

人工智能 机器学习 计算机科学 召回 监督学习 任务(项目管理) 半监督学习 自然语言处理 语音识别 心理学 认知心理学 人工神经网络 经济 管理
作者
Zhihao Bao,Kun Qian,Zhonghao Zhao,Mengkai Sun,Ruolan Huang,Dewen Xu,Bin Hu,Yoshiharu Yamamoto,Björn W. Schuller
标识
DOI:10.1109/embc40787.2023.10340705
摘要

With the depressive psychiatric disorders becoming more common, people are gradually starting to take it seriously. Somatisation disorders, as a general mental disorder, are rarely accurately identified in clinical diagnosis for its specific nature. In the previous work, speech recognition technology has been successfully applied to the task of identifying somatisation disorders on the Shenzhen Somatisation Speech Corpus. Nevertheless, there is still a scarcity of labels for somatisation disorder speech database. The current mainstream approaches in the speech recognition heavily rely on the well labelled data. Compared to supervised learning, self-supervised learning is able to achieve the same or even better recognition results while reducing the reliance on labelled samples. Moreover, self-supervised learning can generate general representations without the need for human hand-crafted features depending on the different recognition tasks. To this end, we apply self-supervised learning pre-trained models to solve few-labelled somatisation disorder speech recognition. In this study, we compare and analyse the results of three self-supervised learning models (contrastive predictive coding, wav2vec and wav2vec 2.0). The best result of wav2vec 2.0 model achieves 77.0 % unweighted average recall and is significantly better than CPC (p < .005), performing better than the benchmark of the supervised learning model.Clinical relevance— This work proposed a self-supervised learning model to resolve the few-labelled SD speech data, which can be well used for helping psychiatrists with clinical assistant to diagnosis. With this model, psychiatrists no longer need to spend a lot of time labelling SD speech data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
往复完成签到,获得积分10
刚刚
3秒前
3秒前
打打应助淡定草丛采纳,获得10
3秒前
3秒前
呼呼呼发布了新的文献求助10
4秒前
懒羊羊不吃糖完成签到,获得积分10
4秒前
异念卿完成签到 ,获得积分10
5秒前
倩青春发布了新的文献求助10
5秒前
哎嘿发布了新的文献求助10
6秒前
7秒前
Fng11发布了新的文献求助10
7秒前
8秒前
8秒前
buno应助光亮的凝雁采纳,获得10
9秒前
情怀应助新田十一郎采纳,获得10
9秒前
Jump发布了新的文献求助10
10秒前
10秒前
11秒前
11秒前
11秒前
11秒前
11秒前
11秒前
12秒前
12秒前
13秒前
13秒前
13秒前
Nell发布了新的文献求助10
13秒前
丹丹发布了新的文献求助10
13秒前
13秒前
14秒前
大个应助等乙天采纳,获得10
14秒前
可燃的冬发布了新的文献求助30
15秒前
小马甲应助懒羊羊不吃糖采纳,获得10
16秒前
16秒前
上官发布了新的文献求助10
16秒前
上官发布了新的文献求助10
16秒前
上官发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588611
求助须知:如何正确求助?哪些是违规求助? 4671642
关于积分的说明 14788202
捐赠科研通 4625797
什么是DOI,文献DOI怎么找? 2531896
邀请新用户注册赠送积分活动 1500456
关于科研通互助平台的介绍 1468324