Somatisation Disorder Detection via Speech: Introducing a Self-Supervised Learning Model

人工智能 机器学习 计算机科学 召回 监督学习 任务(项目管理) 半监督学习 自然语言处理 语音识别 心理学 认知心理学 人工神经网络 经济 管理
作者
Zhihao Bao,Kun Qian,Zhonghao Zhao,Mengkai Sun,Ruolan Huang,Dewen Xu,Bin Hu,Yoshiharu Yamamoto,Björn W. Schuller
标识
DOI:10.1109/embc40787.2023.10340705
摘要

With the depressive psychiatric disorders becoming more common, people are gradually starting to take it seriously. Somatisation disorders, as a general mental disorder, are rarely accurately identified in clinical diagnosis for its specific nature. In the previous work, speech recognition technology has been successfully applied to the task of identifying somatisation disorders on the Shenzhen Somatisation Speech Corpus. Nevertheless, there is still a scarcity of labels for somatisation disorder speech database. The current mainstream approaches in the speech recognition heavily rely on the well labelled data. Compared to supervised learning, self-supervised learning is able to achieve the same or even better recognition results while reducing the reliance on labelled samples. Moreover, self-supervised learning can generate general representations without the need for human hand-crafted features depending on the different recognition tasks. To this end, we apply self-supervised learning pre-trained models to solve few-labelled somatisation disorder speech recognition. In this study, we compare and analyse the results of three self-supervised learning models (contrastive predictive coding, wav2vec and wav2vec 2.0). The best result of wav2vec 2.0 model achieves 77.0 % unweighted average recall and is significantly better than CPC (p < .005), performing better than the benchmark of the supervised learning model.Clinical relevance— This work proposed a self-supervised learning model to resolve the few-labelled SD speech data, which can be well used for helping psychiatrists with clinical assistant to diagnosis. With this model, psychiatrists no longer need to spend a lot of time labelling SD speech data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
1秒前
浮游应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
1秒前
浮游应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
2秒前
4秒前
7秒前
冷傲半邪发布了新的文献求助10
7秒前
小蘑菇应助天天采纳,获得10
8秒前
燕荣完成签到 ,获得积分10
10秒前
慈祥的鸣凤完成签到 ,获得积分10
12秒前
cjh发布了新的文献求助10
14秒前
善良的嫣完成签到 ,获得积分10
20秒前
qiancib202完成签到,获得积分0
27秒前
磨刀霍霍阿里嘎多完成签到 ,获得积分10
28秒前
顺心寄容完成签到,获得积分10
45秒前
刘志萍完成签到 ,获得积分10
51秒前
西柚柠檬完成签到 ,获得积分10
59秒前
geogydeniel完成签到 ,获得积分10
1分钟前
wanci应助cjh采纳,获得10
1分钟前
lyu完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
cjh发布了新的文献求助10
1分钟前
摸鱼主编magazine完成签到,获得积分10
1分钟前
小袁完成签到 ,获得积分10
1分钟前
joe完成签到 ,获得积分10
1分钟前
cjh完成签到,获得积分10
1分钟前
学习完成签到 ,获得积分10
1分钟前
章鱼完成签到,获得积分10
1分钟前
asdf完成签到,获得积分10
1分钟前
cq_2完成签到,获得积分0
1分钟前
guandada完成签到 ,获得积分10
2分钟前
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
JamesPei应助科研通管家采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5498606
求助须知:如何正确求助?哪些是违规求助? 4595782
关于积分的说明 14449747
捐赠科研通 4528754
什么是DOI,文献DOI怎么找? 2481677
邀请新用户注册赠送积分活动 1465732
关于科研通互助平台的介绍 1438550