已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Somatisation Disorder Detection via Speech: Introducing a Self-Supervised Learning Model

人工智能 机器学习 计算机科学 召回 监督学习 任务(项目管理) 半监督学习 自然语言处理 语音识别 心理学 认知心理学 人工神经网络 管理 经济
作者
Zhihao Bao,Kun Qian,Zhonghao Zhao,Mengkai Sun,Ruolan Huang,Dewen Xu,Bin Hu,Yoshiharu Yamamoto,Björn W. Schuller
标识
DOI:10.1109/embc40787.2023.10340705
摘要

With the depressive psychiatric disorders becoming more common, people are gradually starting to take it seriously. Somatisation disorders, as a general mental disorder, are rarely accurately identified in clinical diagnosis for its specific nature. In the previous work, speech recognition technology has been successfully applied to the task of identifying somatisation disorders on the Shenzhen Somatisation Speech Corpus. Nevertheless, there is still a scarcity of labels for somatisation disorder speech database. The current mainstream approaches in the speech recognition heavily rely on the well labelled data. Compared to supervised learning, self-supervised learning is able to achieve the same or even better recognition results while reducing the reliance on labelled samples. Moreover, self-supervised learning can generate general representations without the need for human hand-crafted features depending on the different recognition tasks. To this end, we apply self-supervised learning pre-trained models to solve few-labelled somatisation disorder speech recognition. In this study, we compare and analyse the results of three self-supervised learning models (contrastive predictive coding, wav2vec and wav2vec 2.0). The best result of wav2vec 2.0 model achieves 77.0 % unweighted average recall and is significantly better than CPC (p < .005), performing better than the benchmark of the supervised learning model.Clinical relevance— This work proposed a self-supervised learning model to resolve the few-labelled SD speech data, which can be well used for helping psychiatrists with clinical assistant to diagnosis. With this model, psychiatrists no longer need to spend a lot of time labelling SD speech data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
江南之南完成签到 ,获得积分10
4秒前
碧蓝半梦完成签到,获得积分10
4秒前
房天川完成签到 ,获得积分10
8秒前
李金文应助榨菜采纳,获得50
9秒前
Orange应助曹能豪采纳,获得10
11秒前
cjh完成签到,获得积分10
11秒前
12秒前
yu完成签到 ,获得积分10
16秒前
18秒前
符聪完成签到 ,获得积分10
21秒前
周周粥完成签到 ,获得积分10
22秒前
曹能豪发布了新的文献求助10
22秒前
24秒前
28秒前
luxiaoyu发布了新的文献求助10
29秒前
科研通AI2S应助蓝精灵de你采纳,获得10
30秒前
cheng完成签到 ,获得积分10
30秒前
30秒前
战神林北发布了新的文献求助10
31秒前
春天的粥完成签到 ,获得积分10
33秒前
DZ发布了新的文献求助10
37秒前
李金文应助榨菜采纳,获得50
38秒前
锦城纯契完成签到 ,获得积分10
39秒前
41秒前
1l发布了新的文献求助10
42秒前
可爱的函函应助DZ采纳,获得10
43秒前
44秒前
44秒前
47秒前
xtt121应助冷静新烟采纳,获得10
48秒前
科研通AI6应助siwen采纳,获得10
48秒前
科研通AI6应助luxiaoyu采纳,获得10
50秒前
Dean完成签到,获得积分10
52秒前
54秒前
可久斯基完成签到 ,获得积分10
55秒前
NexusExplorer应助哭泣的犀牛采纳,获得10
58秒前
oleskarabach完成签到,获得积分20
59秒前
59秒前
Dean发布了新的文献求助10
59秒前
李健应助科研通管家采纳,获得20
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4581377
求助须知:如何正确求助?哪些是违规求助? 3999340
关于积分的说明 12381148
捐赠科研通 3673945
什么是DOI,文献DOI怎么找? 2024819
邀请新用户注册赠送积分活动 1058589
科研通“疑难数据库(出版商)”最低求助积分说明 945318