Somatisation Disorder Detection via Speech: Introducing a Self-Supervised Learning Model

人工智能 机器学习 计算机科学 召回 监督学习 任务(项目管理) 半监督学习 自然语言处理 语音识别 心理学 认知心理学 人工神经网络 管理 经济
作者
Zhihao Bao,Kun Qian,Zhonghao Zhao,Mengkai Sun,Ruolan Huang,Dewen Xu,Bin Hu,Yoshiharu Yamamoto,Björn W. Schuller
标识
DOI:10.1109/embc40787.2023.10340705
摘要

With the depressive psychiatric disorders becoming more common, people are gradually starting to take it seriously. Somatisation disorders, as a general mental disorder, are rarely accurately identified in clinical diagnosis for its specific nature. In the previous work, speech recognition technology has been successfully applied to the task of identifying somatisation disorders on the Shenzhen Somatisation Speech Corpus. Nevertheless, there is still a scarcity of labels for somatisation disorder speech database. The current mainstream approaches in the speech recognition heavily rely on the well labelled data. Compared to supervised learning, self-supervised learning is able to achieve the same or even better recognition results while reducing the reliance on labelled samples. Moreover, self-supervised learning can generate general representations without the need for human hand-crafted features depending on the different recognition tasks. To this end, we apply self-supervised learning pre-trained models to solve few-labelled somatisation disorder speech recognition. In this study, we compare and analyse the results of three self-supervised learning models (contrastive predictive coding, wav2vec and wav2vec 2.0). The best result of wav2vec 2.0 model achieves 77.0 % unweighted average recall and is significantly better than CPC (p < .005), performing better than the benchmark of the supervised learning model.Clinical relevance— This work proposed a self-supervised learning model to resolve the few-labelled SD speech data, which can be well used for helping psychiatrists with clinical assistant to diagnosis. With this model, psychiatrists no longer need to spend a lot of time labelling SD speech data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhouyunan完成签到,获得积分10
1秒前
qiqi完成签到,获得积分10
1秒前
1秒前
隐形曼青应助隔壁老璇采纳,获得10
1秒前
三十丶发布了新的文献求助10
2秒前
香蕉觅云应助lululu采纳,获得10
3秒前
song发布了新的文献求助10
5秒前
qiang发布了新的文献求助10
6秒前
科研通AI6应助Aaron采纳,获得10
6秒前
白菜完成签到,获得积分10
7秒前
cy发布了新的文献求助10
8秒前
求真科技完成签到,获得积分10
9秒前
song完成签到,获得积分20
10秒前
YES应助晾猫人采纳,获得10
11秒前
12秒前
科研通AI6应助Aaron采纳,获得200
13秒前
13秒前
14秒前
研友_VZG7GZ应助leahhhhhhhh采纳,获得10
15秒前
佳思思完成签到,获得积分10
16秒前
Mrmiss666发布了新的文献求助10
16秒前
M27发布了新的文献求助10
18秒前
量子星尘发布了新的文献求助10
18秒前
搜集达人应助qiang采纳,获得10
20秒前
梓镱儿完成签到,获得积分10
21秒前
yyds完成签到,获得积分0
22秒前
22秒前
22秒前
Mrmiss666完成签到,获得积分10
22秒前
23秒前
小不完成签到 ,获得积分10
24秒前
24秒前
科目三应助loewy采纳,获得10
25秒前
kkkkk完成签到,获得积分10
25秒前
阿喵完成签到 ,获得积分10
26秒前
cy完成签到,获得积分10
31秒前
噜噜噜完成签到 ,获得积分10
32秒前
小舒完成签到 ,获得积分10
33秒前
搜集达人应助陈妙莹采纳,获得10
34秒前
手拿大炮发布了新的文献求助10
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5420821
求助须知:如何正确求助?哪些是违规求助? 4535884
关于积分的说明 14151756
捐赠科研通 4452650
什么是DOI,文献DOI怎么找? 2442470
邀请新用户注册赠送积分活动 1433895
关于科研通互助平台的介绍 1410988