GBDT_KgluSite: An improved computational prediction model for lysine glutarylation sites based on feature fusion and GBDT classifier

计算机科学 分类器(UML) 人工智能 计算生物学 稳健性(进化) 一般化 机器学习 模式识别(心理学) 生物 数学 遗传学 数学分析 基因
作者
Xin Liu,Bao Zhu,Xia-Wei Dai,Zhi-Ao Xu,Rui Li,Yuting Qian,Yaping Lu,Wenqing Zhang,Yong Liu,Junnian Zheng
出处
期刊:BMC Genomics [Springer Nature]
卷期号:24 (1) 被引量:1
标识
DOI:10.1186/s12864-023-09834-z
摘要

Abstract Background Lysine glutarylation (Kglu) is one of the most important Post-translational modifications (PTMs), which plays significant roles in various cellular functions, including metabolism, mitochondrial processes, and translation. Therefore, accurate identification of the Kglu site is important for elucidating protein molecular function. Due to the time-consuming and expensive limitations of traditional biological experiments, computational-based Kglu site prediction research is gaining more and more attention. Results In this paper, we proposed GBDT_KgluSite, a novel Kglu site prediction model based on GBDT and appropriate feature combinations, which achieved satisfactory performance. Specifically, seven features including sequence-based features, physicochemical property-based features, structural-based features, and evolutionary-derived features were used to characterize proteins. NearMiss-3 and Elastic Net were applied to address data imbalance and feature redundancy issues, respectively. The experimental results show that GBDT_KgluSite has good robustness and generalization ability, with accuracy and AUC values of 93.73%, and 98.14% on five-fold cross-validation as well as 90.11%, and 96.75% on the independent test dataset, respectively. Conclusion GBDT_KgluSite is an effective computational method for identifying Kglu sites in protein sequences. It has good stability and generalization ability and could be useful for the identification of new Kglu sites in the future. The relevant code and dataset are available at https://github.com/flyinsky6/GBDT_KgluSite .

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汤圆完成签到,获得积分10
1秒前
Ff完成签到 ,获得积分10
1秒前
huhdcid发布了新的文献求助10
2秒前
Jasper应助罗九九采纳,获得10
4秒前
5秒前
5秒前
6秒前
远古遗迹完成签到,获得积分10
7秒前
7秒前
摆烂完成签到 ,获得积分10
8秒前
酷波er应助nate采纳,获得10
9秒前
八个脑袋发布了新的文献求助10
9秒前
六六完成签到 ,获得积分10
10秒前
10秒前
11秒前
musicyy222发布了新的文献求助10
11秒前
bcl发布了新的文献求助10
12秒前
14秒前
15秒前
15秒前
府中园马发布了新的文献求助10
15秒前
shadinganchun完成签到,获得积分10
15秒前
Agoni完成签到,获得积分10
15秒前
15秒前
16秒前
17秒前
领导范儿应助如沐春风的采纳,获得10
18秒前
科研通AI6应助zzhh采纳,获得30
19秒前
水瓶完成签到,获得积分10
19秒前
kiki发布了新的文献求助10
20秒前
桐桐应助府中园马采纳,获得10
20秒前
20秒前
量子星尘发布了新的文献求助10
21秒前
我是老大应助清风采纳,获得10
23秒前
烙饼发布了新的文献求助20
24秒前
24秒前
25秒前
Hello应助优美的梦松采纳,获得10
25秒前
Banananan发布了新的文献求助10
26秒前
李健的粉丝团团长应助HYL采纳,获得10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5533498
求助须知:如何正确求助?哪些是违规求助? 4621711
关于积分的说明 14580035
捐赠科研通 4561794
什么是DOI,文献DOI怎么找? 2499622
邀请新用户注册赠送积分活动 1479350
关于科研通互助平台的介绍 1450588