GBDT_KgluSite: An improved computational prediction model for lysine glutarylation sites based on feature fusion and GBDT classifier

计算机科学 分类器(UML) 人工智能 计算生物学 稳健性(进化) 一般化 机器学习 模式识别(心理学) 生物 数学 遗传学 数学分析 基因
作者
Xin Liu,Bao Zhu,Xia-Wei Dai,Zhi-Ao Xu,Rui Li,Yuting Qian,Yaping Lu,Wenqing Zhang,Yong Liu,Junnian Zheng
出处
期刊:BMC Genomics [Springer Nature]
卷期号:24 (1) 被引量:1
标识
DOI:10.1186/s12864-023-09834-z
摘要

Abstract Background Lysine glutarylation (Kglu) is one of the most important Post-translational modifications (PTMs), which plays significant roles in various cellular functions, including metabolism, mitochondrial processes, and translation. Therefore, accurate identification of the Kglu site is important for elucidating protein molecular function. Due to the time-consuming and expensive limitations of traditional biological experiments, computational-based Kglu site prediction research is gaining more and more attention. Results In this paper, we proposed GBDT_KgluSite, a novel Kglu site prediction model based on GBDT and appropriate feature combinations, which achieved satisfactory performance. Specifically, seven features including sequence-based features, physicochemical property-based features, structural-based features, and evolutionary-derived features were used to characterize proteins. NearMiss-3 and Elastic Net were applied to address data imbalance and feature redundancy issues, respectively. The experimental results show that GBDT_KgluSite has good robustness and generalization ability, with accuracy and AUC values of 93.73%, and 98.14% on five-fold cross-validation as well as 90.11%, and 96.75% on the independent test dataset, respectively. Conclusion GBDT_KgluSite is an effective computational method for identifying Kglu sites in protein sequences. It has good stability and generalization ability and could be useful for the identification of new Kglu sites in the future. The relevant code and dataset are available at https://github.com/flyinsky6/GBDT_KgluSite .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bkagyin应助小迪采纳,获得10
刚刚
qianqiu发布了新的文献求助10
1秒前
1秒前
1秒前
科研通AI6应助鲜艳的亿先采纳,获得30
2秒前
科研通AI6应助乔木采纳,获得10
3秒前
jazzmantan发布了新的文献求助10
3秒前
spzdss发布了新的文献求助20
3秒前
lingzi1015完成签到,获得积分10
4秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
5秒前
gis_xu发布了新的文献求助10
5秒前
6秒前
7秒前
陈一完成签到 ,获得积分10
7秒前
香蕉觅云应助年华采纳,获得10
9秒前
夏侯幻梦完成签到 ,获得积分10
9秒前
科研通AI6应助李某某采纳,获得10
9秒前
汉堡包应助简单幸福采纳,获得10
11秒前
hbhbj发布了新的文献求助10
11秒前
赵坤煊发布了新的文献求助20
12秒前
13秒前
binky完成签到,获得积分10
13秒前
科研小弟完成签到,获得积分10
13秒前
Chief完成签到,获得积分0
13秒前
13秒前
黄上权完成签到 ,获得积分10
13秒前
小唐发布了新的文献求助10
14秒前
兴奋雁蓉发布了新的文献求助10
14秒前
15秒前
完美世界应助banksy采纳,获得10
15秒前
16秒前
16秒前
科研通AI6应助圆锥香蕉采纳,获得10
17秒前
17秒前
17秒前
欢呼的开山完成签到,获得积分10
17秒前
懒羊羊发布了新的文献求助10
18秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5406795
求助须知:如何正确求助?哪些是违规求助? 4524516
关于积分的说明 14098938
捐赠科研通 4438379
什么是DOI,文献DOI怎么找? 2436217
邀请新用户注册赠送积分活动 1428245
关于科研通互助平台的介绍 1406340