GBDT_KgluSite: An improved computational prediction model for lysine glutarylation sites based on feature fusion and GBDT classifier

计算机科学 分类器(UML) 人工智能 计算生物学 稳健性(进化) 一般化 机器学习 模式识别(心理学) 生物 数学 遗传学 基因 数学分析
作者
Xin Liu,Bao Zhu,Xia-Wei Dai,Zhi-Ao Xu,Rui Li,Yuting Qian,Yaping Lu,Wenqing Zhang,Yong Liu,Junnian Zheng
出处
期刊:BMC Genomics [Springer Nature]
卷期号:24 (1) 被引量:1
标识
DOI:10.1186/s12864-023-09834-z
摘要

Abstract Background Lysine glutarylation (Kglu) is one of the most important Post-translational modifications (PTMs), which plays significant roles in various cellular functions, including metabolism, mitochondrial processes, and translation. Therefore, accurate identification of the Kglu site is important for elucidating protein molecular function. Due to the time-consuming and expensive limitations of traditional biological experiments, computational-based Kglu site prediction research is gaining more and more attention. Results In this paper, we proposed GBDT_KgluSite, a novel Kglu site prediction model based on GBDT and appropriate feature combinations, which achieved satisfactory performance. Specifically, seven features including sequence-based features, physicochemical property-based features, structural-based features, and evolutionary-derived features were used to characterize proteins. NearMiss-3 and Elastic Net were applied to address data imbalance and feature redundancy issues, respectively. The experimental results show that GBDT_KgluSite has good robustness and generalization ability, with accuracy and AUC values of 93.73%, and 98.14% on five-fold cross-validation as well as 90.11%, and 96.75% on the independent test dataset, respectively. Conclusion GBDT_KgluSite is an effective computational method for identifying Kglu sites in protein sequences. It has good stability and generalization ability and could be useful for the identification of new Kglu sites in the future. The relevant code and dataset are available at https://github.com/flyinsky6/GBDT_KgluSite .

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
illi发布了新的文献求助10
刚刚
我来也完成签到 ,获得积分10
1秒前
ccqy完成签到,获得积分10
1秒前
2秒前
烟雨醉巷完成签到 ,获得积分10
3秒前
4秒前
洪都百岁山完成签到,获得积分10
4秒前
5秒前
fiife应助生动凝旋采纳,获得10
5秒前
JamesPei应助豆沙包采纳,获得10
5秒前
6秒前
7秒前
苏落凡完成签到,获得积分10
9秒前
NexusExplorer应助年轻的丹亦采纳,获得10
10秒前
10秒前
激动的严青完成签到,获得积分10
11秒前
研友_VZG7GZ应助粗暴的大门采纳,获得10
11秒前
12秒前
西瑾凉应助粥粥采纳,获得50
12秒前
12秒前
15秒前
wenwenzi完成签到,获得积分10
16秒前
16秒前
CCCcc完成签到,获得积分10
16秒前
胖头鱼完成签到 ,获得积分10
16秒前
hydroxyl发布了新的文献求助10
17秒前
豆沙包发布了新的文献求助10
17秒前
19秒前
犹豫依丝完成签到,获得积分10
19秒前
我我我发布了新的文献求助100
20秒前
卿霜完成签到 ,获得积分10
22秒前
22秒前
22秒前
酷波er应助刻苦成风采纳,获得10
22秒前
mhpvv发布了新的文献求助10
22秒前
illi完成签到,获得积分10
23秒前
辛勤兔子发布了新的文献求助30
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589919
求助须知:如何正确求助?哪些是违规求助? 4674386
关于积分的说明 14793761
捐赠科研通 4629344
什么是DOI,文献DOI怎么找? 2532468
邀请新用户注册赠送积分活动 1501123
关于科研通互助平台的介绍 1468527