GBDT_KgluSite: An improved computational prediction model for lysine glutarylation sites based on feature fusion and GBDT classifier

计算机科学 分类器(UML) 人工智能 计算生物学 稳健性(进化) 一般化 机器学习 模式识别(心理学) 生物 数学 遗传学 基因 数学分析
作者
Xin Liu,Bao Zhu,Xia-Wei Dai,Zhi-Ao Xu,Rui Li,Yuting Qian,Yaping Lu,Wenqing Zhang,Yong Liu,Junnian Zheng
出处
期刊:BMC Genomics [BioMed Central]
卷期号:24 (1) 被引量:1
标识
DOI:10.1186/s12864-023-09834-z
摘要

Abstract Background Lysine glutarylation (Kglu) is one of the most important Post-translational modifications (PTMs), which plays significant roles in various cellular functions, including metabolism, mitochondrial processes, and translation. Therefore, accurate identification of the Kglu site is important for elucidating protein molecular function. Due to the time-consuming and expensive limitations of traditional biological experiments, computational-based Kglu site prediction research is gaining more and more attention. Results In this paper, we proposed GBDT_KgluSite, a novel Kglu site prediction model based on GBDT and appropriate feature combinations, which achieved satisfactory performance. Specifically, seven features including sequence-based features, physicochemical property-based features, structural-based features, and evolutionary-derived features were used to characterize proteins. NearMiss-3 and Elastic Net were applied to address data imbalance and feature redundancy issues, respectively. The experimental results show that GBDT_KgluSite has good robustness and generalization ability, with accuracy and AUC values of 93.73%, and 98.14% on five-fold cross-validation as well as 90.11%, and 96.75% on the independent test dataset, respectively. Conclusion GBDT_KgluSite is an effective computational method for identifying Kglu sites in protein sequences. It has good stability and generalization ability and could be useful for the identification of new Kglu sites in the future. The relevant code and dataset are available at https://github.com/flyinsky6/GBDT_KgluSite .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不是哥们完成签到,获得积分10
刚刚
书于竹帛完成签到,获得积分10
1秒前
1秒前
2秒前
Diss发布了新的文献求助10
2秒前
seanfly完成签到 ,获得积分10
2秒前
爱喝酸奶的轻松熊完成签到 ,获得积分10
3秒前
3秒前
3秒前
耍酷依玉发布了新的文献求助10
3秒前
完美世界应助风清扬采纳,获得10
3秒前
4秒前
4秒前
Desperado完成签到,获得积分10
5秒前
睡神发布了新的文献求助10
5秒前
乐乐应助三里墩头采纳,获得10
5秒前
5秒前
凯睿发布了新的文献求助10
5秒前
可爱的函函应助玖Nine采纳,获得10
6秒前
科目三应助狂野的山雁采纳,获得10
6秒前
丘比特应助对对碰采纳,获得10
6秒前
南湖秋水发布了新的文献求助10
7秒前
7秒前
世界需要我完成签到,获得积分10
7秒前
8秒前
lck完成签到,获得积分10
9秒前
9秒前
9秒前
Lydia发布了新的文献求助10
9秒前
duxh123完成签到 ,获得积分10
10秒前
斯文败类应助不是哥们采纳,获得10
10秒前
SciGPT应助owen采纳,获得10
10秒前
10秒前
PPPPal完成签到,获得积分10
10秒前
123完成签到,获得积分10
11秒前
胖鱼吊灯发布了新的文献求助10
11秒前
明理如冰应助八块腹肌采纳,获得10
11秒前
11秒前
陈文青完成签到,获得积分10
12秒前
赵裘发布了新的文献求助10
12秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961294
求助须知:如何正确求助?哪些是违规求助? 3507579
关于积分的说明 11136907
捐赠科研通 3240039
什么是DOI,文献DOI怎么找? 1790707
邀请新用户注册赠送积分活动 872450
科研通“疑难数据库(出版商)”最低求助积分说明 803255