GBDT_KgluSite: An improved computational prediction model for lysine glutarylation sites based on feature fusion and GBDT classifier

计算机科学 分类器(UML) 人工智能 计算生物学 稳健性(进化) 一般化 机器学习 模式识别(心理学) 生物 数学 遗传学 基因 数学分析
作者
Xin Liu,Bao Zhu,Xia-Wei Dai,Zhi-Ao Xu,Rui Li,Yuting Qian,Yaping Lu,Wenqing Zhang,Yong Liu,Junnian Zheng
出处
期刊:BMC Genomics [Springer Nature]
卷期号:24 (1) 被引量:1
标识
DOI:10.1186/s12864-023-09834-z
摘要

Abstract Background Lysine glutarylation (Kglu) is one of the most important Post-translational modifications (PTMs), which plays significant roles in various cellular functions, including metabolism, mitochondrial processes, and translation. Therefore, accurate identification of the Kglu site is important for elucidating protein molecular function. Due to the time-consuming and expensive limitations of traditional biological experiments, computational-based Kglu site prediction research is gaining more and more attention. Results In this paper, we proposed GBDT_KgluSite, a novel Kglu site prediction model based on GBDT and appropriate feature combinations, which achieved satisfactory performance. Specifically, seven features including sequence-based features, physicochemical property-based features, structural-based features, and evolutionary-derived features were used to characterize proteins. NearMiss-3 and Elastic Net were applied to address data imbalance and feature redundancy issues, respectively. The experimental results show that GBDT_KgluSite has good robustness and generalization ability, with accuracy and AUC values of 93.73%, and 98.14% on five-fold cross-validation as well as 90.11%, and 96.75% on the independent test dataset, respectively. Conclusion GBDT_KgluSite is an effective computational method for identifying Kglu sites in protein sequences. It has good stability and generalization ability and could be useful for the identification of new Kglu sites in the future. The relevant code and dataset are available at https://github.com/flyinsky6/GBDT_KgluSite .

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
weiyi发布了新的文献求助10
1秒前
佩琪完成签到,获得积分10
1秒前
包容秋珊发布了新的文献求助10
1秒前
缥缈的涵菡完成签到 ,获得积分10
2秒前
冷酷的溜溜梅完成签到 ,获得积分10
2秒前
3秒前
kaikai完成签到,获得积分10
3秒前
鱼鱼鱼发布了新的文献求助10
3秒前
带善人完成签到,获得积分10
3秒前
4秒前
4秒前
科研通AI6应助zhangyulong采纳,获得10
4秒前
爆爆发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
5秒前
小雨堂完成签到,获得积分10
6秒前
研友_VZG7GZ应助萝卜采纳,获得10
7秒前
7秒前
7秒前
hu123完成签到,获得积分10
8秒前
领导范儿应助DTS采纳,获得10
8秒前
8秒前
moyu37完成签到,获得积分10
8秒前
8秒前
9秒前
李xxxx发布了新的文献求助10
9秒前
愚林2024发布了新的文献求助10
9秒前
震动的雪一完成签到,获得积分10
9秒前
9秒前
9秒前
天天快乐应助weiyi采纳,获得10
10秒前
10秒前
JamesPei应助欢喜大地采纳,获得10
10秒前
10秒前
jes发布了新的文献求助10
10秒前
Ava应助光亮宛白采纳,获得10
11秒前
Leo完成签到,获得积分10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608256
求助须知:如何正确求助?哪些是违规求助? 4692810
关于积分的说明 14875754
捐赠科研通 4717042
什么是DOI,文献DOI怎么找? 2544147
邀请新用户注册赠送积分活动 1509105
关于科研通互助平台的介绍 1472802