GBDT_KgluSite: An improved computational prediction model for lysine glutarylation sites based on feature fusion and GBDT classifier

计算机科学 分类器(UML) 人工智能 计算生物学 稳健性(进化) 一般化 机器学习 模式识别(心理学) 生物 数学 遗传学 基因 数学分析
作者
Xin Liu,Bao Zhu,Xia-Wei Dai,Zhi-Ao Xu,Rui Li,Yuting Qian,Yaping Lu,Wenqing Zhang,Yong Liu,Junnian Zheng
出处
期刊:BMC Genomics [Springer Nature]
卷期号:24 (1) 被引量:1
标识
DOI:10.1186/s12864-023-09834-z
摘要

Abstract Background Lysine glutarylation (Kglu) is one of the most important Post-translational modifications (PTMs), which plays significant roles in various cellular functions, including metabolism, mitochondrial processes, and translation. Therefore, accurate identification of the Kglu site is important for elucidating protein molecular function. Due to the time-consuming and expensive limitations of traditional biological experiments, computational-based Kglu site prediction research is gaining more and more attention. Results In this paper, we proposed GBDT_KgluSite, a novel Kglu site prediction model based on GBDT and appropriate feature combinations, which achieved satisfactory performance. Specifically, seven features including sequence-based features, physicochemical property-based features, structural-based features, and evolutionary-derived features were used to characterize proteins. NearMiss-3 and Elastic Net were applied to address data imbalance and feature redundancy issues, respectively. The experimental results show that GBDT_KgluSite has good robustness and generalization ability, with accuracy and AUC values of 93.73%, and 98.14% on five-fold cross-validation as well as 90.11%, and 96.75% on the independent test dataset, respectively. Conclusion GBDT_KgluSite is an effective computational method for identifying Kglu sites in protein sequences. It has good stability and generalization ability and could be useful for the identification of new Kglu sites in the future. The relevant code and dataset are available at https://github.com/flyinsky6/GBDT_KgluSite .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
caas_ifr_zp完成签到 ,获得积分10
3秒前
香蕉傲之完成签到 ,获得积分10
3秒前
小二郎应助tt采纳,获得10
6秒前
英俊的铭应助活泼啤酒采纳,获得10
9秒前
打打应助孙远欣采纳,获得10
10秒前
乔心完成签到 ,获得积分10
12秒前
搜集达人应助ok采纳,获得10
19秒前
上官若男应助阔达的白竹采纳,获得10
19秒前
英俊的铭应助顽主采纳,获得10
22秒前
筱筱完成签到 ,获得积分10
25秒前
POPO完成签到 ,获得积分10
27秒前
司徒代云发布了新的文献求助50
31秒前
隐形曼青应助ocean采纳,获得10
31秒前
超级雅霜发布了新的文献求助10
36秒前
yy完成签到,获得积分10
38秒前
共享精神应助顽主采纳,获得10
39秒前
40秒前
深情世立完成签到,获得积分10
41秒前
41秒前
43秒前
46秒前
haoliu完成签到,获得积分10
46秒前
47秒前
积木123完成签到,获得积分10
49秒前
Linux2000Pro完成签到,获得积分10
53秒前
53秒前
54秒前
vanshaw.vs发布了新的文献求助10
54秒前
雪儿发布了新的文献求助10
58秒前
活泼啤酒发布了新的文献求助10
59秒前
1分钟前
优雅的善若完成签到 ,获得积分10
1分钟前
perfect完成签到 ,获得积分10
1分钟前
1分钟前
灵溪完成签到 ,获得积分10
1分钟前
脑洞疼应助冷静乌采纳,获得10
1分钟前
weibolizi完成签到,获得积分10
1分钟前
吴雨峰完成签到,获得积分10
1分钟前
颜小溪发布了新的文献求助10
1分钟前
超级雅霜完成签到,获得积分10
1分钟前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera, Volume 3, Part 2 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3165510
求助须知:如何正确求助?哪些是违规求助? 2816611
关于积分的说明 7913235
捐赠科研通 2476117
什么是DOI,文献DOI怎么找? 1318699
科研通“疑难数据库(出版商)”最低求助积分说明 632179
版权声明 602388