已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

GBDT_KgluSite: An improved computational prediction model for lysine glutarylation sites based on feature fusion and GBDT classifier

计算机科学 分类器(UML) 人工智能 计算生物学 稳健性(进化) 一般化 机器学习 模式识别(心理学) 生物 数学 遗传学 基因 数学分析
作者
Xin Liu,Bao Zhu,Xia-Wei Dai,Zhi-Ao Xu,Rui Li,Yuting Qian,Yaping Lu,Wenqing Zhang,Yong Liu,Junnian Zheng
出处
期刊:BMC Genomics [Springer Nature]
卷期号:24 (1) 被引量:1
标识
DOI:10.1186/s12864-023-09834-z
摘要

Abstract Background Lysine glutarylation (Kglu) is one of the most important Post-translational modifications (PTMs), which plays significant roles in various cellular functions, including metabolism, mitochondrial processes, and translation. Therefore, accurate identification of the Kglu site is important for elucidating protein molecular function. Due to the time-consuming and expensive limitations of traditional biological experiments, computational-based Kglu site prediction research is gaining more and more attention. Results In this paper, we proposed GBDT_KgluSite, a novel Kglu site prediction model based on GBDT and appropriate feature combinations, which achieved satisfactory performance. Specifically, seven features including sequence-based features, physicochemical property-based features, structural-based features, and evolutionary-derived features were used to characterize proteins. NearMiss-3 and Elastic Net were applied to address data imbalance and feature redundancy issues, respectively. The experimental results show that GBDT_KgluSite has good robustness and generalization ability, with accuracy and AUC values of 93.73%, and 98.14% on five-fold cross-validation as well as 90.11%, and 96.75% on the independent test dataset, respectively. Conclusion GBDT_KgluSite is an effective computational method for identifying Kglu sites in protein sequences. It has good stability and generalization ability and could be useful for the identification of new Kglu sites in the future. The relevant code and dataset are available at https://github.com/flyinsky6/GBDT_KgluSite .

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
撒旦asd发布了新的文献求助10
1秒前
机智的嘻嘻完成签到 ,获得积分10
2秒前
3秒前
xch完成签到,获得积分10
3秒前
5秒前
lyncee完成签到,获得积分10
5秒前
Lucas应助发的不太好采纳,获得10
6秒前
nono完成签到 ,获得积分10
8秒前
梨凉完成签到,获得积分10
8秒前
yangy0519完成签到,获得积分20
8秒前
科研通AI6.1应助开心夏真采纳,获得10
9秒前
英俊的铭应助添添采纳,获得10
12秒前
15秒前
16秒前
汉堡包应助财荫夹印采纳,获得10
17秒前
科研通AI6.1应助Oscillator采纳,获得10
18秒前
妖妖灵1111完成签到 ,获得积分10
21秒前
yanni发布了新的文献求助30
22秒前
李健应助Cl采纳,获得10
22秒前
22秒前
寻道图强应助科研通管家采纳,获得50
23秒前
23秒前
科研之路完成签到,获得积分10
24秒前
脑洞疼应助科研通管家采纳,获得10
26秒前
深情安青应助科研通管家采纳,获得10
26秒前
寻道图强应助科研通管家采纳,获得50
26秒前
26秒前
wanci应助科研通管家采纳,获得10
26秒前
汉堡包应助科研通管家采纳,获得10
26秒前
水shui完成签到,获得积分10
27秒前
木子完成签到 ,获得积分10
28秒前
开心夏真发布了新的文献求助10
28秒前
29秒前
聪明勇敢有力气完成签到 ,获得积分10
30秒前
糊涂涂完成签到 ,获得积分10
36秒前
lc发布了新的文献求助10
41秒前
41秒前
41秒前
Oscillator发布了新的文献求助10
43秒前
aaaa完成签到,获得积分20
44秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5772121
求助须知:如何正确求助?哪些是违规求助? 5596217
关于积分的说明 15429142
捐赠科研通 4905232
什么是DOI,文献DOI怎么找? 2639279
邀请新用户注册赠送积分活动 1587204
关于科研通互助平台的介绍 1542058