GBDT_KgluSite: An improved computational prediction model for lysine glutarylation sites based on feature fusion and GBDT classifier

计算机科学 分类器(UML) 人工智能 计算生物学 稳健性(进化) 一般化 机器学习 模式识别(心理学) 生物 数学 遗传学 数学分析 基因
作者
Xin Liu,Bao Zhu,Xia-Wei Dai,Zhi-Ao Xu,Rui Li,Yuting Qian,Yaping Lu,Wenqing Zhang,Yong Liu,Junnian Zheng
出处
期刊:BMC Genomics [Springer Nature]
卷期号:24 (1) 被引量:1
标识
DOI:10.1186/s12864-023-09834-z
摘要

Abstract Background Lysine glutarylation (Kglu) is one of the most important Post-translational modifications (PTMs), which plays significant roles in various cellular functions, including metabolism, mitochondrial processes, and translation. Therefore, accurate identification of the Kglu site is important for elucidating protein molecular function. Due to the time-consuming and expensive limitations of traditional biological experiments, computational-based Kglu site prediction research is gaining more and more attention. Results In this paper, we proposed GBDT_KgluSite, a novel Kglu site prediction model based on GBDT and appropriate feature combinations, which achieved satisfactory performance. Specifically, seven features including sequence-based features, physicochemical property-based features, structural-based features, and evolutionary-derived features were used to characterize proteins. NearMiss-3 and Elastic Net were applied to address data imbalance and feature redundancy issues, respectively. The experimental results show that GBDT_KgluSite has good robustness and generalization ability, with accuracy and AUC values of 93.73%, and 98.14% on five-fold cross-validation as well as 90.11%, and 96.75% on the independent test dataset, respectively. Conclusion GBDT_KgluSite is an effective computational method for identifying Kglu sites in protein sequences. It has good stability and generalization ability and could be useful for the identification of new Kglu sites in the future. The relevant code and dataset are available at https://github.com/flyinsky6/GBDT_KgluSite .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
该睡觉啦完成签到,获得积分20
刚刚
刚刚
莫x莫完成签到 ,获得积分10
2秒前
loewy完成签到,获得积分10
2秒前
黄婷发布了新的文献求助10
2秒前
2秒前
yuan完成签到,获得积分10
2秒前
zho发布了新的文献求助10
2秒前
2秒前
苏苏完成签到,获得积分10
3秒前
wanci应助科研通管家采纳,获得10
3秒前
小马甲应助科研通管家采纳,获得80
3秒前
Hello应助科研通管家采纳,获得10
3秒前
小二郎应助科研通管家采纳,获得10
3秒前
在水一方应助科研通管家采纳,获得10
3秒前
小二郎应助科研通管家采纳,获得10
3秒前
万能图书馆应助内向秋寒采纳,获得10
3秒前
3秒前
隐形曼青应助科研通管家采纳,获得10
3秒前
星辰大海应助科研通管家采纳,获得10
3秒前
FashionBoy应助科研通管家采纳,获得10
3秒前
爆米花应助科研通管家采纳,获得10
3秒前
思源应助科研通管家采纳,获得10
3秒前
zzzq应助科研通管家采纳,获得10
3秒前
爆米花应助科研通管家采纳,获得30
3秒前
研友_VZG7GZ应助科研通管家采纳,获得10
3秒前
英俊的铭应助科研通管家采纳,获得10
4秒前
Orange应助科研通管家采纳,获得10
4秒前
soso应助科研通管家采纳,获得10
4秒前
李健应助科研通管家采纳,获得10
4秒前
脑洞疼应助科研通管家采纳,获得10
4秒前
4秒前
orixero应助科研通管家采纳,获得10
4秒前
852应助科研通管家采纳,获得10
4秒前
小二郎应助科研通管家采纳,获得10
4秒前
zzzq应助科研通管家采纳,获得10
4秒前
爆米花应助科研通管家采纳,获得10
4秒前
hzauhzau发布了新的文献求助10
4秒前
4秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794