Deep Learning-Based Predictive Model for Revascularization of Chronic Total Occlusions on Angiographic Imaging

医学 血运重建 传统PCI 经皮冠状动脉介入治疗 心绞痛 放射科 血管造影 心脏病学 内科学 心肌梗塞
作者
Sara Pérez-Martínez,Agustín Fernández‐Cisnal,Manuel Pérez-Pelegrí,Sergio García‐Blas,Gema Miñana,Ernesto Valero,Juan Sanchís,David Moratal
标识
DOI:10.1109/embc40787.2023.10340539
摘要

Revascularization of chronic total occlusions (CTO) is currently one of the most complex procedures in percutaneous coronary intervention (PCI), requiring the use of specific devices and a high level of experience to obtain good results. Once the clinical indication for extensive ischemia or angina uncontrolled with medical treatment has been established, the decision to perform coronary intervention is not simple, since this procedure has a higher rate of complications than non-PCI percutaneous intervention, higher ionizing radiation doses and a lower success rate. However, CTO revascularization has been shown to be helpful in symptomatic improvement of angina, reduction of ischemic burden, or improvement of ejection fraction. The aim of this work is to determine whether a model developed using deep learning techniques, and trained with angiography images, can better predict the likelihood of a successful revascularization procedure for a patient with a chronic total occlusion (CTO) lesion in their coronary artery (measured as procedure success and the duration of time during which X-ray imaging technology is used to perform a medical procedure) than the scales traditionally used. As a preliminary approach, patients with right coronary artery CTO will be included since they present standard angiographic projections that are performed in all patients and present less technical variability (duration, projection angle, image similarity) among them.The ultimate objective is to develop a predictive model to help the clinician in the decision to intervene and to analyze the performance in terms of predicting the success of the technique for the revascularization of chronic occlusions.Clinical Relevance— The development of a deep learning model based on the angiography images could potentially overcome the gold standard and help interventional cardiologists in the treatment decision for percutaneous coronary intervention, maximizing the success rate of coronary intervention.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
waq发布了新的文献求助30
刚刚
1秒前
1秒前
啊啊啊发布了新的文献求助10
1秒前
stt1011完成签到,获得积分10
1秒前
王金金发布了新的文献求助10
1秒前
susuna111完成签到,获得积分10
1秒前
可爱的函函应助oyo采纳,获得10
2秒前
传奇3应助ZZY采纳,获得10
2秒前
Japrin完成签到,获得积分10
2秒前
达菲发布了新的文献求助10
2秒前
大模型应助AnasYusuf采纳,获得10
3秒前
Ava应助大福采纳,获得10
5秒前
NexusExplorer应助雒雨欣采纳,获得10
6秒前
迅速芸遥发布了新的文献求助10
6秒前
科研通AI5应助萌酱采纳,获得10
6秒前
背后海莲发布了新的文献求助10
6秒前
zhengxi发布了新的文献求助10
7秒前
7秒前
Sunmmon完成签到,获得积分10
7秒前
7秒前
共享精神应助醉林采纳,获得10
7秒前
勤劳绿柳完成签到 ,获得积分10
8秒前
8秒前
9秒前
9秒前
9秒前
田様应助kiwi采纳,获得10
9秒前
斯文败类应助帕热达采纳,获得10
11秒前
waq完成签到,获得积分10
12秒前
jialin发布了新的文献求助10
12秒前
似宁完成签到,获得积分10
12秒前
13秒前
李爱国应助犹豫的幻香采纳,获得10
13秒前
YAN发布了新的文献求助10
14秒前
15秒前
张一二完成签到,获得积分20
15秒前
15秒前
15秒前
思源应助KhalilHao采纳,获得10
16秒前
高分求助中
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Where and how to use plate heat exchangers 300
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
The Enzymes,Tyrosinase Volume 56 200
Cardiac arrhythmia classification of imbalanced data using convolutional autoencoder and LSTM techniques 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3702554
求助须知:如何正确求助?哪些是违规求助? 3252352
关于积分的说明 9879214
捐赠科研通 2964416
什么是DOI,文献DOI怎么找? 1625662
邀请新用户注册赠送积分活动 770185
科研通“疑难数据库(出版商)”最低求助积分说明 742869