Source localization in signed networks with effective distance

计算机科学 观察员(物理) 选择(遗传算法) 对抗制 信仰传播 多源 信息来源(数学) 拓扑(电路) 算法 人工智能 数学 统计 物理 组合数学 解码方法 量子力学
作者
Zhi-Wei 志伟 Ma 马,Lei 蕾 Sun 孙,Zhi-Guo 智国 Ding 丁,Yi-Zhen 宜真 Huang 黄,Zhao-Long 兆龙 Hu 胡
出处
期刊:Chinese Physics B [IOP Publishing]
卷期号:33 (2): 028902-028902 被引量:7
标识
DOI:10.1088/1674-1056/ad1482
摘要

While progress has been made in information source localization, it has overlooked the prevalent friend and adversarial relationships in social networks. This paper addresses this gap by focusing on source localization in signed network models. Leveraging the topological characteristics of signed networks and transforming the propagation probability into effective distance, we propose an optimization method for observer selection. Additionally, by using the reverse propagation algorithm we present a method for information source localization in signed networks. Extensive experimental results demonstrate that a higher proportion of positive edges within signed networks contributes to more favorable source localization, and the higher the ratio of propagation rates between positive and negative edges, the more accurate the source localization becomes. Interestingly, this aligns with our observation that, in reality, the number of friends tends to be greater than the number of adversaries, and the likelihood of information propagation among friends is often higher than among adversaries. In addition, the source located at the periphery of the network is not easy to identify. Furthermore, our proposed observer selection method based on effective distance achieves higher operational efficiency and exhibits higher accuracy in information source localization, compared with three strategies for observer selection based on the classical full-order neighbor coverage.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
可爱的函函应助HCKACECE采纳,获得30
1秒前
ttt77发布了新的文献求助10
1秒前
十八冠六完成签到,获得积分10
1秒前
1秒前
1秒前
liu完成签到,获得积分10
1秒前
1秒前
余海燕发布了新的文献求助10
1秒前
江一帆发布了新的文献求助10
2秒前
莫寒兮完成签到,获得积分10
2秒前
小马甲应助liaoliao采纳,获得10
2秒前
CipherSage应助喜多米430采纳,获得10
2秒前
柿柿如意完成签到,获得积分10
2秒前
roywin完成签到,获得积分10
2秒前
天天快乐应助Qionglin采纳,获得10
3秒前
3秒前
至幸发布了新的文献求助10
4秒前
4秒前
wang发布了新的文献求助10
4秒前
wanci应助易烊干洗采纳,获得10
4秒前
xiao发布了新的文献求助10
5秒前
潇洒的翠丝完成签到,获得积分10
5秒前
tiasn发布了新的文献求助10
5秒前
6秒前
炫酷火锅完成签到,获得积分10
6秒前
li发布了新的文献求助10
6秒前
6秒前
zz完成签到,获得积分10
6秒前
传奇3应助小先生采纳,获得10
7秒前
英姑应助小嘻嘻采纳,获得10
7秒前
狂野柠檬给狂野柠檬的求助进行了留言
7秒前
OK完成签到,获得积分10
7秒前
沉静的凡发布了新的文献求助20
8秒前
Axiom发布了新的文献求助30
8秒前
小马甲应助招宇杭采纳,获得10
8秒前
9秒前
差点长成帅哥完成签到,获得积分10
9秒前
zzzzh完成签到 ,获得积分10
9秒前
汪静军发布了新的文献求助10
9秒前
高分求助中
合成生物食品制造技术导则,团体标准,编号:T/CITS 396-2025 1000
The Leucovorin Guide for Parents: Understanding Autism’s Folate 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Fermented Coffee Market 500
Comparing natural with chemical additive production 500
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5238122
求助须知:如何正确求助?哪些是违规求助? 4405802
关于积分的说明 13711768
捐赠科研通 4274090
什么是DOI,文献DOI怎么找? 2345419
邀请新用户注册赠送积分活动 1342496
关于科研通互助平台的介绍 1300416