Deep learning MRI-only synthetic-CT generation for pelvis, brain and head and neck cancers

核医学 医学 头颈部 流体衰减反转恢复 骨盆 头颈部癌 放射科 磁共振成像 放射治疗 外科
作者
D. J. Bird,R. Speight,Sebastian Andersson,Jenny Wingqvist,Bashar Al‐Qaisieh
出处
期刊:Radiotherapy and Oncology [Elsevier BV]
卷期号:191: 110052-110052 被引量:7
标识
DOI:10.1016/j.radonc.2023.110052
摘要

Abstract

Background and purpose

MRI-only planning relies on dosimetrically accurate synthetic-CT (sCT) generation to allow dose calculation. Here we validated the dosimetric accuracy of sCTs generated using a deep learning algorithm for pelvic, brain and head and neck (H&N) cancer sites using variable MRI data from multiple scanners.

Methods

sCT generation models were trained using a cycle-GAN algorithm, using paired MRI-CT patient data. Input MRI sequences were: T2 for pelvis, T1 with gadolinium (T1Gd) and T2 FLAIR for brain and T1 for H&N. Patient validation sCTs were generated for each site (49 - pelvis, 25 - brain and 30 - H&N). VMAT plans, following local clinical protocols, were calculated on planning CTs and recalculated on sCTs. HU and dosimetric differences were assessed, including DVH differences and gamma index (2 %/2mm).

Results

Mean absolute error (MAE) HU differences were; 48.8 HU (pelvis), 118 HU (T2 FLAIR brain), 126 HU (T1Gd brain) and 124 HU (H&N). Mean primary PTV D95% dose differences for all sites were < 0.2 % (range: −0.9 to 1.0 %). Mean 2 %/2mm and 1 %/1mm gamma pass rates for all sites were > 99.6 % (min: 95.3 %) and > 97.3 % (min: 80.1 %) respectively. For all OARs for all sites, mean dose differences were < 0.4 %.

Conclusion

Generated sCTs had excellent dosimetric accuracy for all sites and sequences. The cycle-GAN model, available on the research version of a commercial treatment planning system, is a feasible method for sCT generation with high clinical utility due to its ability to use variable input data from multiple scanners and sequences.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
京阿尼完成签到,获得积分10
3秒前
3秒前
ZWGS发布了新的文献求助10
4秒前
DJDJ完成签到,获得积分10
5秒前
京阿尼发布了新的文献求助10
6秒前
ponymjj完成签到,获得积分10
6秒前
wanci应助cq采纳,获得10
7秒前
7秒前
7秒前
7秒前
小宇完成签到,获得积分10
8秒前
飘零枫叶完成签到,获得积分10
9秒前
白白白完成签到,获得积分10
9秒前
Wy发布了新的文献求助10
10秒前
10秒前
科研通AI5应助英俊珩采纳,获得10
10秒前
幼稚园老大完成签到,获得积分10
10秒前
Erich完成签到 ,获得积分10
10秒前
獭獭完成签到,获得积分10
10秒前
田様应助科研通管家采纳,获得10
10秒前
JamesPei应助科研通管家采纳,获得10
10秒前
Hello应助科研通管家采纳,获得10
10秒前
8R60d8应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
今后应助科研通管家采纳,获得10
10秒前
研友_VZG7GZ应助科研通管家采纳,获得10
11秒前
ding应助科研通管家采纳,获得10
11秒前
彭于彦祖应助科研通管家采纳,获得20
11秒前
流露完成签到,获得积分10
11秒前
Akim应助科研通管家采纳,获得10
11秒前
zyfqpc应助科研通管家采纳,获得10
11秒前
在水一方应助科研通管家采纳,获得10
11秒前
搜集达人应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
11秒前
科研通AI5应助AAA采纳,获得10
11秒前
小小苏荷发布了新的文献求助10
12秒前
wangxiaohui给wangxiaohui的求助进行了留言
12秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Izeltabart tapatansine - AdisInsight 800
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3774229
求助须知:如何正确求助?哪些是违规求助? 3319961
关于积分的说明 10197633
捐赠科研通 3034461
什么是DOI,文献DOI怎么找? 1665041
邀请新用户注册赠送积分活动 796603
科研通“疑难数据库(出版商)”最低求助积分说明 757510