A Dataset for Generating Chinese Landscape Painting

绘画 山水画 预处理器 风格(视觉艺术) 计算机科学 人工智能 考古 艺术 地理 视觉艺术
作者
Zengguo Sun,Haoyue Li,Xiaojun Wu,Yumei Zhang,Rong Guo,Biyu Wang,Liren Dong
标识
DOI:10.1109/cost60524.2023.00048
摘要

A dataset was constructed for intelligent generation of Chinese landscape paintings based on deep learning, which provides the scientific assistance for inheriting the traditional Chinese culture. This dataset is originated from the two of top ten paintings in ancient China, i.e., "Dwelling in the Fuchun Mountains" with ink wash style and "A Thousand Li of Rivers and Mountains" with style of blue and green. This dataset contains landscape paintings and their corresponding sketches, as well as photos of natural landscapes. The samples of landscape paintings are achieved with the size of $256\times 256$ due to the technique of image preprocessing, the samples of sketches are generated by the canny edge detector, and the samples of landscape photos are formed by image flipping. The above samples of landscape paintings, sketches, and photos make the dataset more flexible for the generation of landscape paintings. Based on this dataset, landscape paintings can be generated from sketches and photos respectively, and landscape paintings can be transferred from one style to another. The experimental results demonstrate the suitability of the dataset for the field of landscape painting generation. The constructed dataset will be publicly available to the community.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助CY采纳,获得10
刚刚
救救孩子我想要论文完成签到,获得积分10
1秒前
1秒前
2秒前
乐观生活发布了新的文献求助10
2秒前
LI完成签到,获得积分10
2秒前
4秒前
李健应助科研通管家采纳,获得10
4秒前
汉堡包应助科研通管家采纳,获得10
4秒前
完美世界应助科研通管家采纳,获得10
4秒前
Ava应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
不配.应助科研通管家采纳,获得10
4秒前
斯文败类应助科研通管家采纳,获得10
5秒前
yufanhui应助科研通管家采纳,获得10
5秒前
不配.应助科研通管家采纳,获得20
5秒前
yufanhui应助科研通管家采纳,获得10
5秒前
yufanhui应助科研通管家采纳,获得10
5秒前
共享精神应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
852应助科研通管家采纳,获得10
5秒前
欣慰外绣发布了新的文献求助10
6秒前
feifei完成签到,获得积分10
9秒前
9秒前
瑾年发布了新的文献求助10
11秒前
12秒前
tanhaili完成签到,获得积分10
12秒前
echasl73完成签到,获得积分10
12秒前
胡小月发布了新的文献求助10
14秒前
iNk应助Singularity采纳,获得20
15秒前
甜梨完成签到,获得积分10
15秒前
B1n发布了新的文献求助10
15秒前
123完成签到,获得积分10
16秒前
16秒前
卡卡发布了新的文献求助10
17秒前
kkk556发布了新的文献求助10
17秒前
乐观生活完成签到,获得积分20
18秒前
18秒前
18秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140593
求助须知:如何正确求助?哪些是违规求助? 2791382
关于积分的说明 7798857
捐赠科研通 2447772
什么是DOI,文献DOI怎么找? 1302046
科研通“疑难数据库(出版商)”最低求助积分说明 626434
版权声明 601194