Preoperative prediction of renal fibrous capsule invasion in clear cell renal cell carcinoma using CT-based radiomics model

肾细胞癌 医学 肾透明细胞癌 接收机工作特性 肾癌 分割 肾切除术 阿达布思 放射科 人工智能 计算机科学 分类器(UML) 病理 内科学
作者
Yaodan Zhang,Jinsong Zhao,Zhijun Li,Meng Yang,Zhaoxiang Ye
出处
期刊:British Journal of Radiology [British Institute of Radiology]
标识
DOI:10.1093/bjr/tqae122
摘要

Abstract Objectives To develop radiomics-based classifiers for preoperative prediction of fibrous capsule invasion in renal cell carcinoma (RCC) patients by CT images. Methods In this study, clear cell RCC (ccRCC) patients who underwent both preoperative abdominal contrast-enhanced CT and nephrectomy surgery at our hospital were analyzed. By transfer learning, we used base model obtained from Kidney Tumor Segmentation challenge dataset to semi-automatically segment kidney and tumors from corticomedullary phase (CMP) CT images. Dice similarity coefficient (DSC) was measured to evaluate the performance of segmentation models. Ten machine learning classifiers were compared in our study. Performance of the models was assessed by their accuracy, precision, recall and area under the receiver operating characteristic curve (AUC). The reporting and methodological quality of our study was assessed by the CLEAR checklist and METRICS Score. Results This retrospective study enrolled 163 ccRCC patients. The semiautomatic segmentation model using CMP CT images obtained DSCs of 0.98 on training cohort and 0.96 on test cohort for kidney segmentation, and DSCs of 0.94 and 0.86 for tumor segmentation on training and test set, respectively. For preoperative prediction of renal capsule invasion, the AdaBoost had best performance in batch1, with accuracy, precision, recall and F1-score equal to 0.8571, 0.8333, 0.9091 and 0.8696, respectively; and the same classifier was also the most suitable for this classification in batch 2. The AUCs of AdaBoost for batch 1 and batch 2 were 0.83 (95% CI: 0.68-0.98) and 0.74 (95% CI: 0.51-0.97), respectively. Nine common significant features for classification were found from two independent batch datasets, including morphological and texture features. Conclusions The CT-based radiomics classifiers performed well for preoperative prediction of fibrous capsule invasion in ccRCC. Advances in knowledge Noninvasive prediction of renal fibrous capsule invasion in RCC is rather difficult by abdominal CT images before surgery. A machine learning classifier integrated with radiomics features shows a promising potential to assist surgical treatment options for RCC patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
summertrain发布了新的文献求助10
1秒前
2秒前
所所应助DealTmy采纳,获得10
2秒前
clueless完成签到,获得积分10
3秒前
陈印发布了新的文献求助10
3秒前
崔大胖发布了新的文献求助10
3秒前
3秒前
yang发布了新的文献求助30
4秒前
coolkid完成签到,获得积分10
4秒前
4秒前
CodeCraft应助赵云采纳,获得10
4秒前
大个应助小小怪国王采纳,获得10
5秒前
Weining发布了新的文献求助10
5秒前
mbl2006发布了新的文献求助10
5秒前
传统的怀薇完成签到 ,获得积分10
5秒前
YunK完成签到,获得积分10
5秒前
6秒前
6秒前
巴吉完成签到 ,获得积分10
6秒前
lize5493驳回了Air应助
7秒前
coolkid发布了新的文献求助10
7秒前
8秒前
NVSK完成签到,获得积分10
9秒前
小蘑菇应助自信的盼海采纳,获得10
9秒前
酷波er应助wwwstt采纳,获得10
9秒前
松松完成签到,获得积分10
10秒前
Jasper应助陈印采纳,获得10
10秒前
在水一方应助莫若舞采纳,获得10
11秒前
huco发布了新的文献求助10
12秒前
传奇3应助IAMXC采纳,获得10
13秒前
雨渐渐发布了新的文献求助10
13秒前
14秒前
闪闪的衫发布了新的文献求助10
14秒前
15秒前
16秒前
xiaoGuo应助袁筱筱筱筱采纳,获得30
17秒前
可爱的函函应助松松采纳,获得30
17秒前
篮乐艺完成签到 ,获得积分10
18秒前
18秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3144780
求助须知:如何正确求助?哪些是违规求助? 2796171
关于积分的说明 7818496
捐赠科研通 2452363
什么是DOI,文献DOI怎么找? 1304950
科研通“疑难数据库(出版商)”最低求助积分说明 627377
版权声明 601449