SOCR‐YOLO: Small Objects Detection Algorithm in Medical Images

计算机科学 人工智能 计算机视觉 算法
作者
Yongjie Liu,Yang Li,Mingfeng Jiang,Shuchao Wang,Shitai Ye,Simon Walsh,Guang Yang
出处
期刊:International Journal of Imaging Systems and Technology [Wiley]
卷期号:34 (4) 被引量:6
标识
DOI:10.1002/ima.23130
摘要

ABSTRACT In the field of medical image analysis, object detection plays a crucial role by providing interpretable diagnostic information to healthcare professionals. Although current object detection models have achieved remarkable success in conventional images, their performance in detecting abnormalities in medical images has not been as satisfactory. This is primarily due to the complexity of anatomical structures in medical images, and the fact that some lesions may have subtle features, particularly in the case of early‐stage, small‐scale abnormalities. To address this challenge, we introduce SOCR‐YOLO, a novel lesion detection model with online convolutional reparameterization based on channel shuffling. First, it employs the SOCR (Shuffled Channel with Online Convolutional Re‐parameterization) module to establish a connection between feature concatenation and computational efficiency, aiming to extract more comprehensive information while reducing time consumption. Second, it incorporates the Bi‐FPN structure to achieve multiscale feature fusion. Lastly, the loss function has been optimized to improve the model training process. We evaluated two datasets, chest x‐ray (Vindr‐CXR) and brain tumor (Br35H), provided by the Kaggle competition. Experimental results show that the proposed method has outperformed several state‐of‐the‐art models, including YOLOv8, YOLO‐NAS, and RT‐DETR, in both speed and accuracy. Notably, in the context of chest x‐ray anomaly detection, SOCR‐YOLO exhibits a 1.8% enhancement in accuracy over YOLOv8 while simultaneously reducing floating‐point operations by 26.3%. Additionally, a similar 1.8% improvement in accuracy is observed in the detection of brain tumors. The results indicate the superior ability of our model to detect multiscale variations and small lesions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Anna发布了新的文献求助10
刚刚
深情安青应助April采纳,获得10
刚刚
Lr发布了新的文献求助10
1秒前
dvvvv发布了新的文献求助10
1秒前
Ztx发布了新的文献求助10
1秒前
drughunter009发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
2秒前
667发布了新的文献求助30
3秒前
3秒前
zjh发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
ff发布了新的文献求助10
4秒前
5秒前
5秒前
5秒前
5秒前
liuhll完成签到,获得积分20
5秒前
6秒前
科研通AI6.1应助研友_n0GBAL采纳,获得10
6秒前
Wind应助AugustWong采纳,获得10
7秒前
小蘑菇应助微光熠采纳,获得10
7秒前
桐桐应助momokop采纳,获得10
8秒前
量子星尘发布了新的文献求助30
8秒前
qqqq发布了新的文献求助10
8秒前
机灵的囧发布了新的文献求助10
8秒前
所所应助阮楷瑞采纳,获得10
9秒前
英俊的铭应助标致的冷梅采纳,获得10
9秒前
完美世界应助Ywffffff采纳,获得10
9秒前
科研通AI6应助贾哲宇采纳,获得10
9秒前
Wind应助慈祥的大炮采纳,获得10
10秒前
眉间雪发布了新的文献求助10
10秒前
yhxwqkk发布了新的文献求助10
10秒前
10秒前
lc339发布了新的文献求助30
11秒前
11秒前
12秒前
caigou完成签到,获得积分10
12秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5751577
求助须知:如何正确求助?哪些是违规求助? 5469081
关于积分的说明 15370428
捐赠科研通 4890701
什么是DOI,文献DOI怎么找? 2629836
邀请新用户注册赠送积分活动 1578067
关于科研通互助平台的介绍 1534214