亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

SOCR‐YOLO: Small Objects Detection Algorithm in Medical Images

计算机科学 人工智能 计算机视觉 算法
作者
Yongjie Liu,Yang Li,Mingfeng Jiang,Shuchao Wang,Shitai Ye,Simon Walsh,Guang Yang
出处
期刊:International Journal of Imaging Systems and Technology [Wiley]
卷期号:34 (4) 被引量:3
标识
DOI:10.1002/ima.23130
摘要

ABSTRACT In the field of medical image analysis, object detection plays a crucial role by providing interpretable diagnostic information to healthcare professionals. Although current object detection models have achieved remarkable success in conventional images, their performance in detecting abnormalities in medical images has not been as satisfactory. This is primarily due to the complexity of anatomical structures in medical images, and the fact that some lesions may have subtle features, particularly in the case of early‐stage, small‐scale abnormalities. To address this challenge, we introduce SOCR‐YOLO, a novel lesion detection model with online convolutional reparameterization based on channel shuffling. First, it employs the SOCR (Shuffled Channel with Online Convolutional Re‐parameterization) module to establish a connection between feature concatenation and computational efficiency, aiming to extract more comprehensive information while reducing time consumption. Second, it incorporates the Bi‐FPN structure to achieve multiscale feature fusion. Lastly, the loss function has been optimized to improve the model training process. We evaluated two datasets, chest x‐ray (Vindr‐CXR) and brain tumor (Br35H), provided by the Kaggle competition. Experimental results show that the proposed method has outperformed several state‐of‐the‐art models, including YOLOv8, YOLO‐NAS, and RT‐DETR, in both speed and accuracy. Notably, in the context of chest x‐ray anomaly detection, SOCR‐YOLO exhibits a 1.8% enhancement in accuracy over YOLOv8 while simultaneously reducing floating‐point operations by 26.3%. Additionally, a similar 1.8% improvement in accuracy is observed in the detection of brain tumors. The results indicate the superior ability of our model to detect multiscale variations and small lesions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
5秒前
量子星尘发布了新的文献求助10
17秒前
vbnn完成签到 ,获得积分10
40秒前
55秒前
1分钟前
123发布了新的文献求助10
1分钟前
1分钟前
1分钟前
123完成签到,获得积分20
1分钟前
gyx完成签到 ,获得积分10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
LEMONS应助123采纳,获得10
2分钟前
2分钟前
sujingbo完成签到 ,获得积分10
2分钟前
斯文败类应助archer01采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
3分钟前
archer01发布了新的文献求助10
3分钟前
maria_takayama关注了科研通微信公众号
3分钟前
archer01完成签到,获得积分10
3分钟前
科目三应助archer01采纳,获得10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
KINGAZX完成签到 ,获得积分10
3分钟前
4分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
5分钟前
科研通AI2S应助kaka采纳,获得10
5分钟前
5分钟前
5分钟前
5分钟前
5分钟前
沙与沫完成签到 ,获得积分10
5分钟前
Krim完成签到 ,获得积分10
5分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3957065
求助须知:如何正确求助?哪些是违规求助? 3503084
关于积分的说明 11111255
捐赠科研通 3234121
什么是DOI,文献DOI怎么找? 1787751
邀请新用户注册赠送积分活动 870772
科研通“疑难数据库(出版商)”最低求助积分说明 802264