Deep generative models generate mRNA sequences with enhanced translation capacity and stability

翻译(生物学) 生成语法 理论(学习稳定性) 生成模型 信使核糖核酸 人工智能 计算机科学 生物 机器学习 遗传学 基因
作者
He Zhang,Hailong Liu,Yushan Xu,Yiming Liu,Jia Wang,Yan Qin,Haiyan Wang,Lili Ma,Zhiyuan Xun,Timothy K. Lu,Jicong Cao
标识
DOI:10.1101/2024.06.20.599727
摘要

Despite the tremendous success of messenger RNA (mRNA) COVID-19 vaccines, the extension of this modality to a broader spectrum of diseases necessitates substantial enhancements, particularly in the design of mRNAs with elevated expression levels and extended durability. Here we present GEMORNA, a deep generative model designed to generate novel mRNA coding sequences (CDSs) and untranslated regions (UTRs) with superior translation capacity, comparable to the sophisticated task of language translation and free-form poetry composition with accurate grammar and semantics. Our AI model was trained on an extensive collection of RNA sequences from diverse families, further enhanced with labeled data to refine its performance. Remarkably, we demonstrate that our AI-generated mRNAs exhibited 8.2-fold and 15.9-fold increases in firefly luciferase expression compared to benchmark mRNAs in two different cell types. Additionally, Our AI- designed COVID-19 mRNA vaccine elicited a 4-fold increase in anti-COVID antibody titer in mice relative to BNT162b2. Furthermore, GEMORNA’s versatility extends to circular mRNA design, which we facilitated a 27-fold increase in human erythropoietin protein expression in vivo than a systematically optimized benchmark sequence. We also created circular mRNAs with substantial improvements in expression levels, durability and anti-tumor cell cytotoxicity in mRNA-transduced CAR-T cells compared with an experimentally validated benchmark. In summary, GEMORNA generates novel mRNA sequences with significant performance improvements and has the potential to enable a wide range of therapeutic and vaccine applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
友好的凝莲应助czephyr采纳,获得10
刚刚
Orange应助平凡的世界采纳,获得10
1秒前
打打应助平淡紊采纳,获得10
2秒前
久久完成签到,获得积分10
3秒前
简单灵凡发布了新的文献求助10
4秒前
zhouyan完成签到,获得积分10
4秒前
xing完成签到,获得积分10
4秒前
5秒前
若ruofeng应助奋斗的从梦采纳,获得10
6秒前
舟舟完成签到 ,获得积分10
6秒前
大个应助将就采纳,获得10
6秒前
bkagyin应助一二三四采纳,获得10
6秒前
7秒前
落落完成签到,获得积分10
7秒前
科研通AI5应助鳕鱼采纳,获得10
7秒前
江江完成签到 ,获得积分10
8秒前
王了了完成签到 ,获得积分10
8秒前
8秒前
小马甲应助陶渊明采纳,获得30
9秒前
调皮代芙完成签到,获得积分20
10秒前
10秒前
13秒前
13秒前
AA发布了新的文献求助10
15秒前
小鞋完成签到,获得积分10
15秒前
17秒前
咯噔发布了新的文献求助10
17秒前
务实发布了新的文献求助30
18秒前
19秒前
111完成签到,获得积分10
19秒前
20秒前
科研通AI5应助沙青梦采纳,获得10
20秒前
20秒前
Evelyn完成签到,获得积分10
20秒前
一二三四完成签到,获得积分10
20秒前
科研通AI5应助白帝采纳,获得10
21秒前
21秒前
21秒前
体贴的青烟完成签到,获得积分10
22秒前
嘎嘎嘎嘎发布了新的文献求助50
22秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737724
求助须知:如何正确求助?哪些是违规求助? 3281359
关于积分的说明 10024958
捐赠科研通 2998099
什么是DOI,文献DOI怎么找? 1645066
邀请新用户注册赠送积分活动 782525
科研通“疑难数据库(出版商)”最低求助积分说明 749814