Deep generative models generate mRNA sequences with enhanced translation capacity and stability

翻译(生物学) 生成语法 理论(学习稳定性) 生成模型 信使核糖核酸 人工智能 计算机科学 生物 机器学习 遗传学 基因
作者
He Zhang,Hailong Liu,Yushan Xu,Yiming Liu,Jia Wang,Yan Qin,Haiyan Wang,Lili Ma,Zhiyuan Xun,Timothy K. Lu,Jicong Cao
标识
DOI:10.1101/2024.06.20.599727
摘要

Despite the tremendous success of messenger RNA (mRNA) COVID-19 vaccines, the extension of this modality to a broader spectrum of diseases necessitates substantial enhancements, particularly in the design of mRNAs with elevated expression levels and extended durability. Here we present GEMORNA, a deep generative model designed to generate novel mRNA coding sequences (CDSs) and untranslated regions (UTRs) with superior translation capacity, comparable to the sophisticated task of language translation and free-form poetry composition with accurate grammar and semantics. Our AI model was trained on an extensive collection of RNA sequences from diverse families, further enhanced with labeled data to refine its performance. Remarkably, we demonstrate that our AI-generated mRNAs exhibited 8.2-fold and 15.9-fold increases in firefly luciferase expression compared to benchmark mRNAs in two different cell types. Additionally, Our AI- designed COVID-19 mRNA vaccine elicited a 4-fold increase in anti-COVID antibody titer in mice relative to BNT162b2. Furthermore, GEMORNA’s versatility extends to circular mRNA design, which we facilitated a 27-fold increase in human erythropoietin protein expression in vivo than a systematically optimized benchmark sequence. We also created circular mRNAs with substantial improvements in expression levels, durability and anti-tumor cell cytotoxicity in mRNA-transduced CAR-T cells compared with an experimentally validated benchmark. In summary, GEMORNA generates novel mRNA sequences with significant performance improvements and has the potential to enable a wide range of therapeutic and vaccine applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding应助大侦探皮卡丘采纳,获得10
1秒前
1秒前
牛牛发布了新的文献求助10
1秒前
1秒前
珍奇完成签到,获得积分10
2秒前
Bake完成签到,获得积分10
2秒前
科研通AI2S应助夜信采纳,获得10
2秒前
不配.应助轻松的小海豚采纳,获得20
2秒前
科研通AI2S应助砍柴人采纳,获得10
3秒前
英俊的铭应助summer采纳,获得10
4秒前
贪玩仙人掌完成签到,获得积分10
4秒前
4秒前
4秒前
Murray应助周梦蝶采纳,获得10
4秒前
jooe完成签到,获得积分10
5秒前
5秒前
wanci应助ldy采纳,获得10
6秒前
周周完成签到,获得积分10
6秒前
6秒前
乐乐应助愉快向彤采纳,获得10
6秒前
香蕉觅云应助舒适的凡霜采纳,获得10
7秒前
苏苏完成签到,获得积分10
7秒前
quanquan完成签到,获得积分10
8秒前
8秒前
8秒前
祥瑞完成签到,获得积分10
8秒前
碧蓝筝发布了新的文献求助10
8秒前
Kiwi发布了新的文献求助10
9秒前
Hey发布了新的文献求助10
10秒前
11秒前
12秒前
生科爱好者完成签到,获得积分10
12秒前
12秒前
14秒前
日出发布了新的文献求助10
14秒前
14秒前
15秒前
15秒前
15秒前
烟花应助日出采纳,获得10
17秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 830
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3248048
求助须知:如何正确求助?哪些是违规求助? 2891263
关于积分的说明 8266980
捐赠科研通 2559458
什么是DOI,文献DOI怎么找? 1388297
科研通“疑难数据库(出版商)”最低求助积分说明 650711
邀请新用户注册赠送积分活动 627648