已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Survival Prediction in Second Primary Breast Cancer Patients with Machine Learning: An Analysis of SEER Database

医学 比例危险模型 布里氏评分 单变量 乳腺癌 多元统计 接收机工作特性 回归分析 生存分析 特征选择 单变量分析 多元分析 癌症 内科学 统计 人工智能 计算机科学 数学
作者
Yafei Wu,Yaheng Zhang,Siyu Duan,Chenming Gu,Chongtao Wei,Ya Fang
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:254: 108310-108310 被引量:2
标识
DOI:10.1016/j.cmpb.2024.108310
摘要

Studies have found that first primary cancer (FPC) survivors are at high risk of developing second primary breast cancer (SPBC). However, there is a lack of prognostic studies specifically focusing on patients with SPBC. This retrospective study used data from Surveillance, Epidemiology and End Results Program. We selected female FPC survivors diagnosed with SPBC from 12 registries (from January 1998 to December 2018) to construct prognostic models. Meanwhile, SPBC patients selected from another five registries (from January 2010 to December 2018) were used as the validation set to test the model's generalization ability. Four machine learning models and a Cox proportional hazards regression (CoxPH) were constructed to predict the overall survival of SPBC patients. Univariate and multivariate Cox regression analyses were used for feature selection. Model performance was assessed using time-dependent area under the ROC curve (t-AUC) and integrated Brier score (iBrier). A total of 10,321 female FPC survivors with SPBC (mean age [SD]: 66.03 [11.17]) were included for model construction. These patients were randomly split into a training set (mean age [SD]: 65.98 [11.15]) and a test set (mean age [SD]: 66.15 [11.23]) with a ratio of 7:3. In validation set, a total of 3,638 SPBC patients (mean age [SD]: 66.28 [10.68]) were finally enrolled. Sixteen features were selected for model construction through univariate and multivariable Cox regression analyses. Among five models, random survival forest model showed excellent performance with a t-AUC of 0.805 (95%CI: 0.803 - 0.807) and an iBrier of 0.123 (95%CI: 0.122 - 0.124) on testing set, as well as a t-AUC of 0.803 (95%CI: 0.801 - 0.807) and an iBrier of 0.098 (95%CI: 0.096 - 0.103) on validation set. Through feature importance ranking, the top one and other top five key predictive features of the random survival forest model were identified, namely age, stage, regional nodes positive, latency, radiation, and surgery. The random survival forest model outperformed CoxPH and other machine learning models in predicting the overall survival of patients with SPBC, which was helpful for the monitoring of high-risk populations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
科研通AI2S应助汤泽琪采纳,获得10
2秒前
Lucas应助汤泽琪采纳,获得10
2秒前
无花果应助汤泽琪采纳,获得10
2秒前
smottom应助汤泽琪采纳,获得10
2秒前
我是老大应助汤泽琪采纳,获得10
3秒前
小马甲应助汤泽琪采纳,获得10
3秒前
JamesPei应助汤泽琪采纳,获得10
3秒前
隐形曼青应助汤泽琪采纳,获得10
3秒前
乐乐应助汤泽琪采纳,获得10
3秒前
852应助汤泽琪采纳,获得10
3秒前
4秒前
自然秋柳完成签到 ,获得积分10
6秒前
6秒前
我爱Chem完成签到 ,获得积分10
8秒前
善学以致用应助好好好采纳,获得10
9秒前
9秒前
短短急个球完成签到,获得积分10
12秒前
天道酬勤完成签到 ,获得积分10
12秒前
科研通AI2S应助stone12306采纳,获得10
13秒前
16秒前
Ade阿德发布了新的文献求助10
16秒前
超帅的龙猫完成签到,获得积分10
16秒前
17秒前
jyoraku发布了新的文献求助10
22秒前
26秒前
26秒前
wisher完成签到 ,获得积分10
27秒前
Ade阿德完成签到,获得积分10
27秒前
28秒前
jyoraku完成签到,获得积分10
29秒前
yuwen发布了新的文献求助10
32秒前
plant完成签到 ,获得积分10
32秒前
慕青应助kelvin采纳,获得10
33秒前
冷酷的树叶完成签到 ,获得积分10
33秒前
37秒前
杀殿完成签到 ,获得积分10
37秒前
40秒前
zhaoaotao完成签到,获得积分10
40秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968181
求助须知:如何正确求助?哪些是违规求助? 3513189
关于积分的说明 11166755
捐赠科研通 3248411
什么是DOI,文献DOI怎么找? 1794243
邀请新用户注册赠送积分活动 874924
科研通“疑难数据库(出版商)”最低求助积分说明 804629