Survival Prediction in Second Primary Breast Cancer Patients with Machine Learning: An Analysis of SEER Database

医学 比例危险模型 布里氏评分 单变量 乳腺癌 多元统计 接收机工作特性 回归分析 生存分析 特征选择 单变量分析 多元分析 癌症 内科学 统计 人工智能 计算机科学 数学
作者
Yafei Wu,Yaheng Zhang,Siyu Duan,Chenming Gu,Chongtao Wei,Ya Fang
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:254: 108310-108310
标识
DOI:10.1016/j.cmpb.2024.108310
摘要

Studies have found that first primary cancer (FPC) survivors are at high risk of developing second primary breast cancer (SPBC). However, there is a lack of prognostic studies specifically focusing on patients with SPBC. This retrospective study used data from Surveillance, Epidemiology and End Results Program. We selected female FPC survivors diagnosed with SPBC from 12 registries (from January 1998 to December 2018) to construct prognostic models. Meanwhile, SPBC patients selected from another five registries (from January 2010 to December 2018) were used as the validation set to test the model's generalization ability. Four machine learning models and a Cox proportional hazards regression (CoxPH) were constructed to predict the overall survival of SPBC patients. Univariate and multivariate Cox regression analyses were used for feature selection. Model performance was assessed using time-dependent area under the ROC curve (t-AUC) and integrated Brier score (iBrier). A total of 10,321 female FPC survivors with SPBC (mean age [SD]: 66.03 [11.17]) were included for model construction. These patients were randomly split into a training set (mean age [SD]: 65.98 [11.15]) and a test set (mean age [SD]: 66.15 [11.23]) with a ratio of 7:3. In validation set, a total of 3,638 SPBC patients (mean age [SD]: 66.28 [10.68]) were finally enrolled. Sixteen features were selected for model construction through univariate and multivariable Cox regression analyses. Among five models, random survival forest model showed excellent performance with a t-AUC of 0.805 (95%CI: 0.803 - 0.807) and an iBrier of 0.123 (95%CI: 0.122 - 0.124) on testing set, as well as a t-AUC of 0.803 (95%CI: 0.801 - 0.807) and an iBrier of 0.098 (95%CI: 0.096 - 0.103) on validation set. Through feature importance ranking, the top one and other top five key predictive features of the random survival forest model were identified, namely age, stage, regional nodes positive, latency, radiation, and surgery. The random survival forest model outperformed CoxPH and other machine learning models in predicting the overall survival of patients with SPBC, which was helpful for the monitoring of high-risk populations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
恶恶么v发布了新的文献求助10
刚刚
英姑应助demo1采纳,获得10
1秒前
1秒前
研究生完成签到 ,获得积分10
2秒前
此时天完成签到,获得积分10
2秒前
瑾风阳发布了新的文献求助10
4秒前
4秒前
等待航空发布了新的文献求助30
5秒前
zyyyy完成签到,获得积分10
6秒前
大个应助文献小白采纳,获得10
6秒前
兮豫完成签到 ,获得积分10
6秒前
华仔应助欣喜安萱采纳,获得10
6秒前
小思完成签到 ,获得积分10
7秒前
花生了什么树完成签到 ,获得积分10
7秒前
雪芜发布了新的文献求助10
7秒前
小马甲应助mmol采纳,获得10
8秒前
haizz发布了新的文献求助10
8秒前
Nanaming完成签到 ,获得积分10
8秒前
陌路孤星发布了新的文献求助10
8秒前
10秒前
10秒前
10秒前
liyutong完成签到 ,获得积分20
11秒前
扶风阁主完成签到,获得积分10
11秒前
汉堡包应助Freya采纳,获得10
12秒前
领导范儿应助独白采纳,获得10
12秒前
12秒前
13秒前
扳手已就位完成签到,获得积分10
13秒前
13秒前
Yuxuan发布了新的文献求助10
14秒前
14秒前
完美世界应助科研通管家采纳,获得10
14秒前
14秒前
我是老大应助科研通管家采纳,获得10
14秒前
赘婿应助科研通管家采纳,获得30
14秒前
xiyu666完成签到 ,获得积分10
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
15秒前
在水一方应助科研通管家采纳,获得10
15秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3124336
求助须知:如何正确求助?哪些是违规求助? 2774637
关于积分的说明 7723368
捐赠科研通 2430117
什么是DOI,文献DOI怎么找? 1290937
科研通“疑难数据库(出版商)”最低求助积分说明 621972
版权声明 600297