One stage multi-scale efficient network for underwater target detection

计算机科学 水下 稳健性(进化) 特征提取 人工智能 帕斯卡(单位) 棱锥(几何) 特征(语言学) 模式识别(心理学) 卷积神经网络 分割 目标检测 计算机视觉 数据挖掘 基因 海洋学 光学 物理 地质学 哲学 生物化学 语言学 化学 程序设计语言
作者
Huaqiang Zhang,Chenggang Dai,Chengjun Chen,Zhengxu Zhao,Mingxing Lin
出处
期刊:Review of Scientific Instruments [American Institute of Physics]
卷期号:95 (6) 被引量:3
标识
DOI:10.1063/5.0206734
摘要

Due to the complexity of the underwater environment, existing methods for underwater target detection present low precision on small or dense targets. To address these issues, a novel method is proposed for underwater target detection based on YOLOv5s (You Only Look Once version 5 small), which aims to improve the precision and robustness. In this study, an efficient feature extraction network is introduced to extract significant features, and a novel attention mechanism with deformable convolution is designed to improve the feature representation. Subsequently, an adaptive spatial fusion operation is introduced at the neck of YOLOv5s to facilitate feature fusion from various layers. By integrating low-level features with high-level features, the adaptive fusion feature pyramid network effectively integrates global semantic information and decreases the semantic gap between features from various layers, contributing to the high detection precision. Comprehensive experiments demonstrate that the proposed method achieves an mAP50 of 86.97% on the Underwater Robot Professional Contest of China 2020 dataset, 3.07% higher than YOLOv5s. Furthermore, the proposed method achieves a detection precision of 76.0% on the PASCAL VOC2007 dataset, surpassing several outstanding methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
平淡山柏应助科研通管家采纳,获得10
刚刚
共享精神应助科研通管家采纳,获得10
刚刚
刚刚
斯文败类应助科研通管家采纳,获得30
刚刚
小新应助科研通管家采纳,获得10
刚刚
李健应助科研通管家采纳,获得10
刚刚
充电宝应助科研通管家采纳,获得10
刚刚
华仔应助科研通管家采纳,获得10
刚刚
TYY完成签到,获得积分10
刚刚
小二郎应助科研通管家采纳,获得10
刚刚
刚刚
情怀应助科研通管家采纳,获得10
刚刚
Akim应助科研通管家采纳,获得10
刚刚
Owen应助唐一采纳,获得10
刚刚
Hello应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得10
1秒前
小新应助科研通管家采纳,获得10
1秒前
Mine_cherry应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
buno应助科研通管家采纳,获得10
1秒前
1秒前
小新应助科研通管家采纳,获得10
1秒前
1秒前
浮游应助科研通管家采纳,获得10
1秒前
是小袁呀发布了新的文献求助10
1秒前
桐桐应助freya采纳,获得80
1秒前
wuyy完成签到,获得积分20
1秒前
沙一汀绯闻女友完成签到,获得积分10
1秒前
汉堡包应助aa采纳,获得30
2秒前
Orange应助知秋采纳,获得10
2秒前
小马甲应助知秋采纳,获得10
2秒前
2秒前
3秒前
3秒前
3秒前
手残症完成签到,获得积分10
3秒前
Wcy完成签到,获得积分10
3秒前
3秒前
研友_842M4n发布了新的文献求助10
3秒前
susu发布了新的文献求助10
4秒前
高分求助中
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Objective or objectionable? Ideological aspects of dictionaries 360
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5581693
求助须知:如何正确求助?哪些是违规求助? 4665895
关于积分的说明 14759417
捐赠科研通 4607833
什么是DOI,文献DOI怎么找? 2528395
邀请新用户注册赠送积分活动 1497666
关于科研通互助平台的介绍 1466553