Enhancing classification with hybrid feature selection: A multi-objective genetic algorithm for high-dimensional data

特征选择 计算机科学 遗传算法 选择(遗传算法) 人工智能 特征(语言学) 机器学习 数据分类 数据挖掘 模式识别(心理学) 算法 哲学 语言学
作者
Jonas da Silveira Bohrer,Márcio Dorn
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:: 124518-124518
标识
DOI:10.1016/j.eswa.2024.124518
摘要

Feature selection is a fundamental step in machine learning, serving to reduce dataset redundancy, accelerate training speed, and improve model quality. This is particularly crucial in high-dimensional datasets, where the excess of features presents challenges for pattern recognition and data analysis. Recent methods proposed for high-dimensional data are often tailored for specific domains, leaving a lack of consensus on a universally recommended solution for general use cases. This paper proposes a hybrid feature selection approach using a multi-objective genetic algorithm to enhance classification performance and reduce dimensionality across diverse classification tasks. The proposed approach narrows the search space of possible relevant features by exploring the combined outputs of classical feature selection methods through novel genetic algorithm operators. This enables the evolution of combined solutions potentially not explored by the original methods, generating optimized feature sets in a process that adapts to different data conditions. Experimental results demonstrate the effectiveness of the proposed method in high-dimensional use cases, offering improved classification performance with reduced feature sets. In summary, our hybrid method offers a promising solution for addressing the challenges of high-dimensional datasets by enhancing classification performance in varying domains and data conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
whatever举报熊熊求助涉嫌违规
3秒前
研友_VZG7GZ应助Cinatolii采纳,获得10
3秒前
领导范儿应助回到未来采纳,获得10
4秒前
4秒前
4秒前
4秒前
Hello应助dreamer采纳,获得10
5秒前
方文杰完成签到,获得积分10
5秒前
田様应助前交叉还在采纳,获得10
5秒前
5秒前
5秒前
今后应助小学徒采纳,获得10
5秒前
阿彤发布了新的文献求助10
6秒前
友00000发布了新的文献求助10
6秒前
6秒前
醉熏的朋友完成签到 ,获得积分10
6秒前
朴素若枫完成签到,获得积分10
6秒前
机智ss发布了新的文献求助10
6秒前
7秒前
NIni妮发布了新的文献求助10
9秒前
jjjjj发布了新的文献求助10
9秒前
10秒前
Jasper应助林志文采纳,获得10
10秒前
脑洞疼应助foxp3采纳,获得10
10秒前
11秒前
11秒前
12秒前
北海发布了新的文献求助10
12秒前
12秒前
12秒前
搜集达人应助拼搏飞柏采纳,获得10
12秒前
12秒前
13秒前
咖飞完成签到,获得积分10
13秒前
暮辞发布了新的文献求助10
13秒前
13秒前
调研昵称发布了新的文献求助10
14秒前
15秒前
酷波er应助刻苦冰颜采纳,获得10
15秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3144482
求助须知:如何正确求助?哪些是违规求助? 2796014
关于积分的说明 7817418
捐赠科研通 2452067
什么是DOI,文献DOI怎么找? 1304867
科研通“疑难数据库(出版商)”最低求助积分说明 627330
版权声明 601432