Enhancing the stability of Li2NiO2 cathode additive with polyborosiloxane coating for high-energy lithium-ion batteries

锂(药物) 阴极 涂层 离子 材料科学 磷酸钒锂电池 化学工程 能量密度 复合材料 工程物理 化学 电化学 物理 物理化学 电极 有机化学 工程类 心理学 精神科
作者
Yun Seong Byeon,Dong-Il Kim,Min Jae You,Sung‐Min Park,Changhoon Song,Eung‐Ju Lee,Seungmin Oh,Min‐Sik Park
出处
期刊:Applied Surface Science [Elsevier]
卷期号:669: 160494-160494
标识
DOI:10.1016/j.apsusc.2024.160494
摘要

Li2NiO2 has garnered considerable interest as a Li-excess cathode additive for high-energy lithium-ion batteries (LIBs), attributed to its high irreversible capacity during the initial cycle and an operating voltage comparable with that of commercial cathode materials. However, its integration into practical applications is limited by its suboptimal cycling performance owing to moisture instability and gas evolution. To surmount these obstacles, we developed a hybrid surface coating strategy employing polyborosiloxane (PBS)—a structural derivative of polydimethylsiloxane (PDMS) synthesized with boric acid (H3BO3)—applied to a Li2NiO2 cathode additive. The bi-functional of the PBS layer enhances moisture resistance and ionic conductivity on the Li2NiO2 surface. A hydrophobic, elastic PDMS matrix offers conformal coverage, forestalling adverse moisture-induced side reactions. The introduction of H3BO3 into the PDMS matrix on the Li2NiO2 surface fosters the formation of Li–B–O bonds, thus augmenting the ionic conductivity of the coating. This innovative approach with the PBS layer significantly diminishes the interfacial resistance and improves the cycling performance of Li2NiO2 while preventing substantial structural degradation. In a full-cell configuration incorporating a PBS-coated Li2NiO2 cathode additive with a LiNi0.8Co0.1Mn0.1O2 cathode and a SiOx/Graphite anode, the enhanced energy density and sustained stable cycling performance exceed 300 cycles. This hybrid layer can aid in producing longer-lasting, more efficient LIBs that can fulfill the requirements for use in high-energy storage solutions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
时势造英雄完成签到 ,获得积分10
刚刚
Coisini发布了新的文献求助10
2秒前
missinged发布了新的文献求助10
3秒前
3秒前
忧虑的代芙完成签到 ,获得积分10
3秒前
qq1640564935完成签到,获得积分10
4秒前
BINBIN完成签到 ,获得积分10
4秒前
vivi完成签到,获得积分10
6秒前
7秒前
Alicia完成签到 ,获得积分10
8秒前
qq1640564935发布了新的文献求助10
8秒前
8秒前
cheese完成签到 ,获得积分10
9秒前
感动老师完成签到,获得积分10
9秒前
9秒前
11秒前
teadan完成签到,获得积分10
12秒前
Aprial完成签到 ,获得积分10
13秒前
Ava应助科研通管家采纳,获得10
15秒前
所所应助科研通管家采纳,获得10
15秒前
15秒前
斯文败类应助科研通管家采纳,获得10
15秒前
星辰大海应助科研通管家采纳,获得10
15秒前
15秒前
大模型应助科研通管家采纳,获得10
15秒前
ding应助科研通管家采纳,获得30
15秒前
16秒前
Jasper应助科研通管家采纳,获得10
16秒前
jinhuanghuiyu应助科研通管家采纳,获得10
16秒前
16秒前
16秒前
16秒前
980721小范发布了新的文献求助10
21秒前
在水一方应助强国复兴采纳,获得10
21秒前
怕黑银耳汤完成签到,获得积分10
22秒前
KD发布了新的文献求助10
24秒前
SCI完成签到,获得积分10
25秒前
26秒前
Jau完成签到,获得积分0
26秒前
悠悠夏日长完成签到 ,获得积分10
27秒前
高分求助中
Impact of Mitophagy-Related Genes on the Diagnosis and Development of Esophageal Squamous Cell Carcinoma via Single-Cell RNA-seq Analysis and Machine Learning Algorithms 2000
How to Create Beauty: De Lairesse on the Theory and Practice of Making Art 1000
Gerard de Lairesse : an artist between stage and studio 670
大平正芳: 「戦後保守」とは何か 550
2019第三届中国LNG储运技术交流大会论文集 500
Contributo alla conoscenza del bifenile e dei suoi derivati. Nota XV. Passaggio dal sistema bifenilico a quello fluorenico 500
Multiscale Thermo-Hydro-Mechanics of Frozen Soil: Numerical Frameworks and Constitutive Models 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 2998407
求助须知:如何正确求助?哪些是违规求助? 2658903
关于积分的说明 7198485
捐赠科研通 2294450
什么是DOI,文献DOI怎么找? 1216676
科研通“疑难数据库(出版商)”最低求助积分说明 593594
版权声明 592904