Understanding Structure Of LLM using Neural Cluster Knockout

计算机科学 星团(航天器) 人工神经网络 人工智能 计算机网络
作者
Pranav Arvind Bhile,Pattie Maes
标识
DOI:10.1109/icicv62344.2024.00045
摘要

This research work presents a groundbreaking approach at the intersection of neuroscience and generative Artificial Intelligence (AI), focusing on the application of neuroscience techniques to neural networks, specifically Large Language Models (LLMs). Central to this study is the concept of 'neural cluster knockout' in LLMs, a method inspired by lesion studies in neuroscience involving the systematic removal of neuron clusters to decipher their role within the model. The research underscores the opaque nature of neural networks, particularly LLMs, which are often critiqued for their 'black box' operation. By adopting neuroscience principles, particularly lesion studies, this paper aims to illuminate the inner workings of neural networks, enhancing our understanding of their functionalities. This is crucial in an era increasingly reliant on AI in various sectors, where insights from this study could lead to the development of more efficient, transparent, and accountable AI systems. Methodologically, this study involved Principal Component Analysis (PCA) and neural cluster knockout through iterative zeroing, applied to the Large Language Model named LLaMA. This approach enabled the identification of significant neuron clusters and their functional impacts when deactivated. The results reveal both critical and redundant neurons within LLMs, demonstrating that some clusters are vital for accuracy, while others may impede efficiency or contribute to errors. This research contributes significantly to the AI field, offering a novel perspective on the intricate architecture of LLMs. It lays a foundation for future advancements in AI, envisioning refined and efficient LLMs capable of more accurate and reliable performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gg完成签到,获得积分10
1秒前
BJJ发布了新的文献求助10
2秒前
36038138完成签到 ,获得积分10
2秒前
wanci应助碇真嗣采纳,获得10
2秒前
2秒前
吃饱饱完成签到,获得积分10
3秒前
gg发布了新的文献求助10
4秒前
lumingrui发布了新的文献求助10
4秒前
Krstal完成签到 ,获得积分10
4秒前
4秒前
桂花乌龙完成签到,获得积分10
4秒前
做实验太菜完成签到,获得积分10
5秒前
SciGPT应助BaBa采纳,获得10
6秒前
7秒前
Gtingting关注了科研通微信公众号
8秒前
llll完成签到,获得积分10
8秒前
涨涨涨发布了新的文献求助10
9秒前
Galaxy完成签到,获得积分10
9秒前
英吉利25发布了新的文献求助10
11秒前
11秒前
13秒前
科研通AI2S应助凶狠的便当采纳,获得10
14秒前
华仔应助高工采纳,获得10
15秒前
16秒前
深情安青应助诸缘郡采纳,获得10
16秒前
16秒前
wyblobin完成签到,获得积分10
17秒前
努力学习完成签到,获得积分10
17秒前
BaBa发布了新的文献求助10
18秒前
18秒前
19秒前
19秒前
Wuc发布了新的文献求助10
19秒前
还没想好完成签到,获得积分10
21秒前
DaLu完成签到,获得积分10
23秒前
23秒前
24秒前
24秒前
lenon完成签到,获得积分10
24秒前
Gtingting发布了新的文献求助10
25秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966458
求助须知:如何正确求助?哪些是违规求助? 3511940
关于积分的说明 11161056
捐赠科研通 3246726
什么是DOI,文献DOI怎么找? 1793483
邀请新用户注册赠送积分活动 874465
科研通“疑难数据库(出版商)”最低求助积分说明 804403