Understanding Structure Of LLM using Neural Cluster Knockout

计算机科学 星团(航天器) 人工神经网络 人工智能 计算机网络
作者
Pranav Arvind Bhile,Pattie Maes
标识
DOI:10.1109/icicv62344.2024.00045
摘要

This research work presents a groundbreaking approach at the intersection of neuroscience and generative Artificial Intelligence (AI), focusing on the application of neuroscience techniques to neural networks, specifically Large Language Models (LLMs). Central to this study is the concept of 'neural cluster knockout' in LLMs, a method inspired by lesion studies in neuroscience involving the systematic removal of neuron clusters to decipher their role within the model. The research underscores the opaque nature of neural networks, particularly LLMs, which are often critiqued for their 'black box' operation. By adopting neuroscience principles, particularly lesion studies, this paper aims to illuminate the inner workings of neural networks, enhancing our understanding of their functionalities. This is crucial in an era increasingly reliant on AI in various sectors, where insights from this study could lead to the development of more efficient, transparent, and accountable AI systems. Methodologically, this study involved Principal Component Analysis (PCA) and neural cluster knockout through iterative zeroing, applied to the Large Language Model named LLaMA. This approach enabled the identification of significant neuron clusters and their functional impacts when deactivated. The results reveal both critical and redundant neurons within LLMs, demonstrating that some clusters are vital for accuracy, while others may impede efficiency or contribute to errors. This research contributes significantly to the AI field, offering a novel perspective on the intricate architecture of LLMs. It lays a foundation for future advancements in AI, envisioning refined and efficient LLMs capable of more accurate and reliable performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
sarah发布了新的文献求助10
1秒前
jinzhen发布了新的文献求助10
1秒前
Ler发布了新的文献求助10
1秒前
2秒前
张小南完成签到,获得积分10
2秒前
orixero应助开心千青采纳,获得10
2秒前
禛禛发布了新的文献求助10
3秒前
liangmao应助gg采纳,获得10
3秒前
5秒前
笨笨妙旋发布了新的文献求助10
5秒前
Pidan完成签到,获得积分10
6秒前
6秒前
6秒前
binbin发布了新的文献求助10
6秒前
研友_8KXEBL完成签到,获得积分10
7秒前
jinzhen完成签到,获得积分10
7秒前
7秒前
张益萌应助liam采纳,获得30
7秒前
8秒前
8秒前
科研通AI2S应助gaoyang123采纳,获得30
9秒前
希望天下0贩的0应助xixi采纳,获得10
10秒前
一禅发布了新的文献求助10
10秒前
叮当发布了新的文献求助10
11秒前
11秒前
汉堡包应助Yuan采纳,获得10
12秒前
悟小空完成签到,获得积分10
12秒前
12秒前
12秒前
Ler完成签到,获得积分10
13秒前
dd发布了新的文献求助10
13秒前
13秒前
13秒前
hao发布了新的文献求助10
15秒前
15秒前
小幸运完成签到,获得积分10
16秒前
sxr发布了新的文献求助10
16秒前
vivia完成签到,获得积分10
17秒前
zc_0116应助朱荧荧采纳,获得80
17秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3308756
求助须知:如何正确求助?哪些是违规求助? 2942097
关于积分的说明 8507396
捐赠科研通 2617067
什么是DOI,文献DOI怎么找? 1429972
科研通“疑难数据库(出版商)”最低求助积分说明 663969
邀请新用户注册赠送积分活动 649186