Supervise-Assisted Self-Supervised Deep-Learning Method for Hyperspectral Image Restoration

高光谱成像 人工智能 计算机科学 深度学习 图像(数学) 模式识别(心理学) 计算机视觉
作者
Miaoyu Li,Ying Fu,Tao Zhang,Guanghui Wen
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14 被引量:3
标识
DOI:10.1109/tnnls.2024.3386809
摘要

Hyperspectral image (HSI) restoration is a challenging research area, covering a variety of inverse problems. Previous works have shown the great success of deep learning in HSI restoration. However, facing the problem of distribution gaps between training HSIs and target HSI, those data-driven methods falter in delivering satisfactory outcomes for the target HSIs. In addition, the degradation process of HSIs is usually disturbed by noise, which is not well taken into account in existing restoration methods. The existence of noise further exacerbates the dissimilarities within the data, rendering it challenging to attain desirable results without an appropriate learning approach. To track these issues, in this article, we propose a supervise-assisted self-supervised deep-learning method to restore noisy degraded HSIs. Initially, we facilitate the restoration network to acquire a generalized prior through supervised learning from extensive training datasets. Then, the self-supervised learning stage is employed and utilizes the specific prior of the target HSI. Particularly, to restore clean HSIs during the self-supervised learning stage from noisy degraded HSIs, we introduce a noise-adaptive loss function that leverages inner statistics of noisy degraded HSIs for restoration. The proposed noise-adaptive loss consists of Stein's unbiased risk estimator (SURE) and total variation (TV) regularizer and fine-tunes the network with the presence of noise. We demonstrate through experiments on different HSI tasks, including denoising, compressive sensing, super-resolution, and inpainting, that our method outperforms state-of-the-art methods on benchmarks under quantitative metrics and visual quality. The code is available at https://github.com/ying-fu/SSDL-HSI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
美好斓发布了新的文献求助10
刚刚
1秒前
1秒前
1秒前
热吻街头发布了新的文献求助10
1秒前
白嫖论文完成签到 ,获得积分10
2秒前
2秒前
3秒前
sttich发布了新的文献求助10
3秒前
啊凡发布了新的文献求助10
3秒前
柿子大人发布了新的文献求助10
4秒前
苏帅发布了新的文献求助10
4秒前
5秒前
wanci应助折镜采纳,获得10
6秒前
雪白语海发布了新的文献求助10
6秒前
思源应助加油采纳,获得10
6秒前
7秒前
Cker发布了新的文献求助10
7秒前
天天快乐应助cff采纳,获得10
8秒前
口口发布了新的文献求助10
8秒前
科研通AI2S应助3268590946采纳,获得10
8秒前
8秒前
乐乐应助瘦瘦的惜筠采纳,获得10
8秒前
Yziii应助zd采纳,获得20
9秒前
李爱国应助江汛采纳,获得10
9秒前
10秒前
良药发布了新的文献求助10
10秒前
田様应助啊凡采纳,获得10
11秒前
11秒前
11秒前
11秒前
13秒前
在水一方应助美好斓采纳,获得10
13秒前
13秒前
柔弱云朵应助Cker采纳,获得10
13秒前
14秒前
dong发布了新的文献求助10
14秒前
典雅天薇发布了新的文献求助10
15秒前
幸福大白发布了新的文献求助10
15秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150003
求助须知:如何正确求助?哪些是违规求助? 2801002
关于积分的说明 7843063
捐赠科研通 2458575
什么是DOI,文献DOI怎么找? 1308544
科研通“疑难数据库(出版商)”最低求助积分说明 628553
版权声明 601721