亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Supervise-Assisted Self-Supervised Deep-Learning Method for Hyperspectral Image Restoration

高光谱成像 人工智能 计算机科学 深度学习 图像(数学) 模式识别(心理学) 计算机视觉
作者
Miaoyu Li,Ying Fu,Tao Zhang,Guanghui Wen
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14 被引量:6
标识
DOI:10.1109/tnnls.2024.3386809
摘要

Hyperspectral image (HSI) restoration is a challenging research area, covering a variety of inverse problems. Previous works have shown the great success of deep learning in HSI restoration. However, facing the problem of distribution gaps between training HSIs and target HSI, those data-driven methods falter in delivering satisfactory outcomes for the target HSIs. In addition, the degradation process of HSIs is usually disturbed by noise, which is not well taken into account in existing restoration methods. The existence of noise further exacerbates the dissimilarities within the data, rendering it challenging to attain desirable results without an appropriate learning approach. To track these issues, in this article, we propose a supervise-assisted self-supervised deep-learning method to restore noisy degraded HSIs. Initially, we facilitate the restoration network to acquire a generalized prior through supervised learning from extensive training datasets. Then, the self-supervised learning stage is employed and utilizes the specific prior of the target HSI. Particularly, to restore clean HSIs during the self-supervised learning stage from noisy degraded HSIs, we introduce a noise-adaptive loss function that leverages inner statistics of noisy degraded HSIs for restoration. The proposed noise-adaptive loss consists of Stein's unbiased risk estimator (SURE) and total variation (TV) regularizer and fine-tunes the network with the presence of noise. We demonstrate through experiments on different HSI tasks, including denoising, compressive sensing, super-resolution, and inpainting, that our method outperforms state-of-the-art methods on benchmarks under quantitative metrics and visual quality. The code is available at https://github.com/ying-fu/SSDL-HSI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
曾经的电脑完成签到 ,获得积分10
2秒前
8R60d8应助Kirito采纳,获得10
3秒前
4秒前
songjing完成签到,获得积分10
4秒前
汉堡包应助ice采纳,获得10
5秒前
香蕉觅云应助songjing采纳,获得10
9秒前
9秒前
Ljm发布了新的文献求助10
10秒前
一只东北鸟完成签到 ,获得积分10
14秒前
14秒前
小袁完成签到 ,获得积分10
21秒前
22秒前
25秒前
25秒前
永远少年完成签到,获得积分10
28秒前
shaylie完成签到 ,获得积分10
37秒前
xdmhv完成签到 ,获得积分10
39秒前
科研小白阳阳完成签到,获得积分10
55秒前
忧心的曼凝完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
Anthonywll完成签到 ,获得积分10
1分钟前
酷波er应助忧心的曼凝采纳,获得10
1分钟前
SS完成签到,获得积分0
1分钟前
开霁完成签到 ,获得积分10
1分钟前
xinqianying完成签到 ,获得积分10
1分钟前
清樾完成签到 ,获得积分10
1分钟前
HS完成签到,获得积分10
2分钟前
酷波er应助科研通管家采纳,获得10
2分钟前
楠楠2001完成签到 ,获得积分10
2分钟前
安静无招完成签到 ,获得积分10
2分钟前
小胡爱科研完成签到 ,获得积分10
2分钟前
祁问儿完成签到 ,获得积分10
2分钟前
完美世界应助粗心的新之采纳,获得10
2分钟前
Kirito重新开启了拾柒文献应助
2分钟前
2分钟前
ice发布了新的文献求助10
2分钟前
2分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3995047
求助须知:如何正确求助?哪些是违规求助? 3535108
关于积分的说明 11267090
捐赠科研通 3274893
什么是DOI,文献DOI怎么找? 1806498
邀请新用户注册赠送积分活动 883335
科研通“疑难数据库(出版商)”最低求助积分说明 809764