Supervise-Assisted Self-Supervised Deep-Learning Method for Hyperspectral Image Restoration

高光谱成像 人工智能 计算机科学 深度学习 图像(数学) 模式识别(心理学) 计算机视觉
作者
Miaoyu Li,Ying Fu,Tao Zhang,Guanghui Wen
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14 被引量:5
标识
DOI:10.1109/tnnls.2024.3386809
摘要

Hyperspectral image (HSI) restoration is a challenging research area, covering a variety of inverse problems. Previous works have shown the great success of deep learning in HSI restoration. However, facing the problem of distribution gaps between training HSIs and target HSI, those data-driven methods falter in delivering satisfactory outcomes for the target HSIs. In addition, the degradation process of HSIs is usually disturbed by noise, which is not well taken into account in existing restoration methods. The existence of noise further exacerbates the dissimilarities within the data, rendering it challenging to attain desirable results without an appropriate learning approach. To track these issues, in this article, we propose a supervise-assisted self-supervised deep-learning method to restore noisy degraded HSIs. Initially, we facilitate the restoration network to acquire a generalized prior through supervised learning from extensive training datasets. Then, the self-supervised learning stage is employed and utilizes the specific prior of the target HSI. Particularly, to restore clean HSIs during the self-supervised learning stage from noisy degraded HSIs, we introduce a noise-adaptive loss function that leverages inner statistics of noisy degraded HSIs for restoration. The proposed noise-adaptive loss consists of Stein's unbiased risk estimator (SURE) and total variation (TV) regularizer and fine-tunes the network with the presence of noise. We demonstrate through experiments on different HSI tasks, including denoising, compressive sensing, super-resolution, and inpainting, that our method outperforms state-of-the-art methods on benchmarks under quantitative metrics and visual quality. The code is available at https://github.com/ying-fu/SSDL-HSI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zzc发布了新的文献求助10
刚刚
1秒前
1秒前
1秒前
青易完成签到,获得积分10
2秒前
2秒前
柳柳发布了新的文献求助10
2秒前
2秒前
genhao7发布了新的文献求助10
2秒前
一袋薯片发布了新的文献求助30
3秒前
ZQM发布了新的文献求助10
4秒前
SYLH应助嗨~小金毛采纳,获得30
4秒前
SucceedIn发布了新的文献求助10
4秒前
Chos1nz应助Bazinga采纳,获得10
5秒前
南海神尼完成签到,获得积分10
5秒前
6秒前
CodeCraft应助无望采纳,获得10
6秒前
微笑天磊完成签到,获得积分10
6秒前
jor666发布了新的文献求助20
6秒前
pcr163应助ggg采纳,获得80
7秒前
Leucalypt完成签到,获得积分10
7秒前
12发布了新的文献求助10
8秒前
大个应助快乐保温杯采纳,获得10
8秒前
科研通AI5应助lt采纳,获得10
8秒前
健壮的赛凤完成签到,获得积分10
9秒前
林川发布了新的文献求助10
10秒前
Hxind完成签到,获得积分10
10秒前
10秒前
乔巴完成签到,获得积分10
10秒前
英姑应助朴实的亦云采纳,获得10
11秒前
11秒前
moiumuio完成签到,获得积分10
11秒前
太叔明辉发布了新的文献求助10
11秒前
星光点点完成签到 ,获得积分10
11秒前
景初柔发布了新的文献求助10
11秒前
RickySong发布了新的文献求助10
12秒前
ding应助宋灵竹采纳,获得10
13秒前
ZQM完成签到,获得积分10
13秒前
称心的远航完成签到,获得积分10
13秒前
传奇3应助黑钻采纳,获得10
13秒前
高分求助中
The organometallic chemistry of the transition metals 7th 666
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
The Oxford Handbook of Émile Durkheim 300
Handbook of Laboratory Animal Science 300
Where and How Use PHEs 300
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3702336
求助须知:如何正确求助?哪些是违规求助? 3252249
关于积分的说明 9878392
捐赠科研通 2964282
什么是DOI,文献DOI怎么找? 1625586
邀请新用户注册赠送积分活动 770101
科研通“疑难数据库(出版商)”最低求助积分说明 742762