Multimodal Conditioned Diffusion Model for Recommendation

计算机科学 扩散 物理 热力学
作者
Haokai Ma,Yimeng Yang,Lei Meng,Ruobing Xie,Xiangxu Meng
标识
DOI:10.1145/3589335.3651956
摘要

Multimodal recommendation aims at to modeling the feature distributions of items by using their multi-modal information. Prior efforts typically focus on the denoising of the user-item graph with a degree-sensitive strategy, which may not well-handle the users' consistent preference across modalities. More importantly, it has been observed that existing methods may learn ill-posed item embeddings due to their focus on a specific auxiliary optimization task for multimodal representations rather than explicitly modeling them. This paper therefore presents a solution that takes the advantages of the explicit uncertainty injection ability of Diffusion Model (DM) for the modeling and fusion of multi-modal information. Specifically, we propose a novel Multimodal Conditioned Diffusion Model for Recommendation (MCDRec), which tailors DM with two technical modules to model the high-order multimodal knowledge. The first module is multimodal-conditioned representation diffusion (MRD), which integrates pre-extracted multimodal knowledge into the item representation modeling via a tailored DM. This smoothly bridges the insurmountable gap between the multi-modal content features and the collaborative signals. Secondly, with the diffusion-guided graph denoising (DGD) module, MCDRec may effectively denoise the user-item graph by filtering the occasional interactions in user historical behaviors. This is achieved with the power of DM in aligning the users' collaborative preferences with their shared items' content information. Extensive experiments compared to several SOTA baselines on two real-word datasets demonstrate the effectiveness of MCDRec. The specific visualization also reveals the potential of MRD to precisely handling the high-order representation correlations among the user embeddings and the multi-modal heterogeneous representations of items.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助冷冷采纳,获得10
4秒前
搜集达人应助环糊精采纳,获得10
4秒前
有野发布了新的文献求助30
4秒前
领导范儿应助zhangsudi采纳,获得10
5秒前
7秒前
赘婿应助拾光小铺采纳,获得30
8秒前
SciGPT应助我爱学习采纳,获得10
8秒前
XNM完成签到,获得积分10
12秒前
15秒前
Jasper应助platanus采纳,获得10
16秒前
科研通AI5应助专一的涵山采纳,获得30
16秒前
18秒前
Shelly悦888完成签到,获得积分10
18秒前
zhangsudi发布了新的文献求助10
18秒前
在水一方应助小小孙采纳,获得10
20秒前
打打应助Silence采纳,获得10
21秒前
我爱学习发布了新的文献求助10
22秒前
靖哥哥发布了新的文献求助10
23秒前
Shelly悦888发布了新的文献求助10
23秒前
23秒前
28秒前
30秒前
阿飞完成签到,获得积分10
31秒前
张歪歪完成签到,获得积分10
31秒前
Silence发布了新的文献求助10
32秒前
32秒前
俏皮大地发布了新的文献求助10
34秒前
吱吱的孜孜完成签到,获得积分10
34秒前
Christina完成签到,获得积分10
35秒前
汉堡包应助如沐春风采纳,获得10
36秒前
lele7458完成签到,获得积分20
37秒前
xcf6653发布了新的文献求助10
37秒前
38秒前
冷傲的灯泡应助项阑悦采纳,获得10
38秒前
38秒前
lele7458发布了新的文献求助10
41秒前
顾矜应助要什么自行车采纳,获得10
42秒前
gdgd完成签到,获得积分20
42秒前
须眉交白完成签到,获得积分10
43秒前
李健应助哇哈哈采纳,获得10
44秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3672528
求助须知:如何正确求助?哪些是违规求助? 3228832
关于积分的说明 9782122
捐赠科研通 2939271
什么是DOI,文献DOI怎么找? 1610713
邀请新用户注册赠送积分活动 760709
科研通“疑难数据库(出版商)”最低求助积分说明 736198