A rolling bearing fault diagnosis method based on interactive generative feature space oversampling-based autoencoder under imbalanced data

过采样 自编码 断层(地质) 特征(语言学) 人工智能 方位(导航) 计算机科学 模式识别(心理学) 空格(标点符号) 生成语法 特征向量 深度学习 地质学 计算机网络 语言学 哲学 带宽(计算) 地震学 操作系统
作者
F Huang,Kai Zhang,Zhixuan Li,Qing Zheng,Guofu Ding,Minghang Zhao,Yuehong Zhang
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
被引量:5
标识
DOI:10.1177/14759217241248209
摘要

With the rapid development of railroads and the yearly increase in the scale of operation, the safe operation and maintenance of rail trains have become particularly important. Among them, deep learning-based bearing fault diagnosis methods have attracted more and more attention in rail train operation and maintenance. However, rail trains usually operate normally. Collecting complete fault data for deep learning model training is often difficult. Such scenarios with a large difference between the number of normal data and fault data usually affect the performance of fault diagnosis models. Here, an interactive generative feature space oversampling-based autoencoder (IGFSO-AE) is proposed to realize fault sample generation under imbalanced data. First, the original vibration signal is converted into a semantically stable amplitude–frequency signal by fast Fourier transform and input into the autoencoder; second, the order of the hidden layer space features of the autoencoder is randomly exchanged, and the interactive sample generation learning strategy trains the autoencoder; then, interpolation oversampling is used to interpolate samples in the hidden layer space where the Euclidean distance between samples is large, and is input into the decoder, the generated samples are mixed with the original samples to form a new training set, which is used to train the intelligent fault diagnosis model and output the diagnosis results. Finally, the performance of the proposed method is evaluated using the publicly available bearing dataset and the bogie-bearing fault simulation bench in our lab. The experimental results show that IGFSO-AE can generate diverse samples with incremental information and exhibits robustness and superiority in different imbalanced proportions of data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
我嘞个豆完成签到,获得积分10
3秒前
爱笑晓曼发布了新的文献求助10
4秒前
wdy111应助sc采纳,获得20
4秒前
敏感初露发布了新的文献求助10
4秒前
隐形曼青应助机智思真采纳,获得10
7秒前
思源应助时尚俊驰采纳,获得10
7秒前
可爱的函函应助敏感初露采纳,获得10
7秒前
8秒前
爆米花应助橙子采纳,获得10
11秒前
量子星尘发布了新的文献求助10
13秒前
阿满完成签到 ,获得积分10
14秒前
王馨雨完成签到,获得积分10
15秒前
在水一方应助袁涛采纳,获得10
15秒前
爱笑晓曼完成签到,获得积分10
18秒前
19秒前
20秒前
nuoran发布了新的文献求助10
21秒前
21秒前
乐乐宝完成签到,获得积分10
22秒前
23秒前
彭于晏应助阿钉采纳,获得10
24秒前
孙燕应助阿钉采纳,获得10
24秒前
整齐小松鼠应助阿钉采纳,获得10
24秒前
jszhoucl发布了新的文献求助10
25秒前
一定行发布了新的文献求助10
25秒前
jxlu发布了新的文献求助10
26秒前
28秒前
橙子发布了新的文献求助10
28秒前
科研通AI5应助科研通管家采纳,获得10
29秒前
李健应助科研通管家采纳,获得10
29秒前
爆米花应助科研通管家采纳,获得10
29秒前
乐乐应助科研通管家采纳,获得10
29秒前
天天快乐应助科研通管家采纳,获得10
29秒前
科研通AI2S应助科研通管家采纳,获得10
29秒前
CipherSage应助科研通管家采纳,获得10
30秒前
科研通AI5应助科研通管家采纳,获得10
30秒前
30秒前
华仔应助科研通管家采纳,获得10
30秒前
30秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989378
求助须知:如何正确求助?哪些是违规求助? 3531442
关于积分的说明 11254002
捐赠科研通 3270126
什么是DOI,文献DOI怎么找? 1804887
邀请新用户注册赠送积分活动 882087
科研通“疑难数据库(出版商)”最低求助积分说明 809173