A rolling bearing fault diagnosis method based on interactive generative feature space oversampling-based autoencoder under imbalanced data

过采样 自编码 断层(地质) 特征(语言学) 人工智能 方位(导航) 计算机科学 模式识别(心理学) 空格(标点符号) 生成语法 特征向量 深度学习 地质学 哲学 地震学 操作系统 带宽(计算) 语言学 计算机网络
作者
F Huang,Kai Zhang,Zhixuan Li,Qing Zheng,Guofu Ding,Minghang Zhao,Yuehong Zhang
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
被引量:5
标识
DOI:10.1177/14759217241248209
摘要

With the rapid development of railroads and the yearly increase in the scale of operation, the safe operation and maintenance of rail trains have become particularly important. Among them, deep learning-based bearing fault diagnosis methods have attracted more and more attention in rail train operation and maintenance. However, rail trains usually operate normally. Collecting complete fault data for deep learning model training is often difficult. Such scenarios with a large difference between the number of normal data and fault data usually affect the performance of fault diagnosis models. Here, an interactive generative feature space oversampling-based autoencoder (IGFSO-AE) is proposed to realize fault sample generation under imbalanced data. First, the original vibration signal is converted into a semantically stable amplitude–frequency signal by fast Fourier transform and input into the autoencoder; second, the order of the hidden layer space features of the autoencoder is randomly exchanged, and the interactive sample generation learning strategy trains the autoencoder; then, interpolation oversampling is used to interpolate samples in the hidden layer space where the Euclidean distance between samples is large, and is input into the decoder, the generated samples are mixed with the original samples to form a new training set, which is used to train the intelligent fault diagnosis model and output the diagnosis results. Finally, the performance of the proposed method is evaluated using the publicly available bearing dataset and the bogie-bearing fault simulation bench in our lab. The experimental results show that IGFSO-AE can generate diverse samples with incremental information and exhibits robustness and superiority in different imbalanced proportions of data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
悠悠梦完成签到,获得积分10
刚刚
刚刚
Rain完成签到,获得积分10
刚刚
刚刚
燕荣完成签到 ,获得积分10
刚刚
米奇完成签到 ,获得积分10
1秒前
HMYX完成签到 ,获得积分10
1秒前
GGG完成签到,获得积分10
1秒前
努力考博发布了新的文献求助10
2秒前
3秒前
Dongxz666发布了新的文献求助10
3秒前
赘婿应助武雨寒采纳,获得10
3秒前
3秒前
筱璞羲完成签到,获得积分10
3秒前
小透明发布了新的文献求助10
3秒前
456完成签到 ,获得积分10
4秒前
drift完成签到,获得积分10
4秒前
leek完成签到 ,获得积分10
4秒前
4秒前
你怎么睡得着觉完成签到,获得积分10
5秒前
5秒前
17876581310完成签到 ,获得积分10
6秒前
君莫笑完成签到,获得积分10
7秒前
la_un_ty发布了新的文献求助30
7秒前
想去山上当猴完成签到,获得积分10
7秒前
8秒前
努力考博完成签到,获得积分10
8秒前
万能图书馆应助bling采纳,获得10
9秒前
11发布了新的文献求助10
9秒前
Kopernik完成签到,获得积分20
9秒前
量子星尘发布了新的文献求助10
9秒前
科研通AI6应助牛牛采纳,获得30
9秒前
壮观砖家发布了新的文献求助20
9秒前
9秒前
好久不见发布了新的文献求助10
9秒前
优美的觅珍完成签到,获得积分20
10秒前
ATREE发布了新的文献求助10
10秒前
zhou123432完成签到,获得积分10
10秒前
爆米花应助czj采纳,获得10
11秒前
Alan发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600240
求助须知:如何正确求助?哪些是违规求助? 4685922
关于积分的说明 14840705
捐赠科研通 4675920
什么是DOI,文献DOI怎么找? 2538610
邀请新用户注册赠送积分活动 1505696
关于科研通互助平台的介绍 1471162