亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A rolling bearing fault diagnosis method based on interactive generative feature space oversampling-based autoencoder under imbalanced data

过采样 自编码 断层(地质) 特征(语言学) 人工智能 方位(导航) 计算机科学 模式识别(心理学) 空格(标点符号) 生成语法 特征向量 深度学习 地质学 计算机网络 语言学 哲学 带宽(计算) 地震学 操作系统
作者
F Huang,Kai Zhang,Zhixuan Li,Qing Zheng,Guofu Ding,Minghang Zhao,Yuehong Zhang
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
被引量:5
标识
DOI:10.1177/14759217241248209
摘要

With the rapid development of railroads and the yearly increase in the scale of operation, the safe operation and maintenance of rail trains have become particularly important. Among them, deep learning-based bearing fault diagnosis methods have attracted more and more attention in rail train operation and maintenance. However, rail trains usually operate normally. Collecting complete fault data for deep learning model training is often difficult. Such scenarios with a large difference between the number of normal data and fault data usually affect the performance of fault diagnosis models. Here, an interactive generative feature space oversampling-based autoencoder (IGFSO-AE) is proposed to realize fault sample generation under imbalanced data. First, the original vibration signal is converted into a semantically stable amplitude–frequency signal by fast Fourier transform and input into the autoencoder; second, the order of the hidden layer space features of the autoencoder is randomly exchanged, and the interactive sample generation learning strategy trains the autoencoder; then, interpolation oversampling is used to interpolate samples in the hidden layer space where the Euclidean distance between samples is large, and is input into the decoder, the generated samples are mixed with the original samples to form a new training set, which is used to train the intelligent fault diagnosis model and output the diagnosis results. Finally, the performance of the proposed method is evaluated using the publicly available bearing dataset and the bogie-bearing fault simulation bench in our lab. The experimental results show that IGFSO-AE can generate diverse samples with incremental information and exhibits robustness and superiority in different imbalanced proportions of data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bji完成签到,获得积分10
刚刚
2秒前
孟繁荣发布了新的文献求助10
6秒前
斯文败类应助孟繁荣采纳,获得10
15秒前
28秒前
孟繁荣发布了新的文献求助10
32秒前
Ava应助孟繁荣采纳,获得10
40秒前
43秒前
54秒前
孟繁荣发布了新的文献求助10
58秒前
1分钟前
甜美的秋尽完成签到,获得积分10
1分钟前
大个应助孟繁荣采纳,获得10
1分钟前
1分钟前
1分钟前
孟繁荣发布了新的文献求助10
1分钟前
1分钟前
慕青应助孟繁荣采纳,获得10
1分钟前
YifanWang应助科研通管家采纳,获得10
1分钟前
YifanWang应助科研通管家采纳,获得20
1分钟前
YifanWang应助科研通管家采纳,获得20
1分钟前
1分钟前
1分钟前
孟繁荣发布了新的文献求助10
1分钟前
丸子头发布了新的文献求助10
2分钟前
Hello应助孟繁荣采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
丸子头完成签到,获得积分10
2分钟前
孟繁荣发布了新的文献求助10
2分钟前
田様应助孟繁荣采纳,获得10
2分钟前
袁青寒完成签到,获得积分10
2分钟前
2分钟前
2分钟前
孟繁荣发布了新的文献求助10
2分钟前
专注越彬完成签到,获得积分10
2分钟前
专注越彬发布了新的文献求助10
3分钟前
科研通AI5应助枯蚀采纳,获得10
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
可见光通信专用集成电路及实时系统 500
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4880231
求助须知:如何正确求助?哪些是违规求助? 4166952
关于积分的说明 12927398
捐赠科研通 3925807
什么是DOI,文献DOI怎么找? 2154922
邀请新用户注册赠送积分活动 1173009
关于科研通互助平台的介绍 1077253