MatterSim: A Deep Learning Atomistic Model Across Elements, Temperatures and Pressures

深度学习 材料科学 人工智能 计算机科学
作者
Han Yang,Chenxi Hu,Yichi Zhou,Xixian Liu,Shi Yu,J Li,Guanzhi Li,Zekun Chen,Sichu Chen,Claudio Zeni,Matthew K. Horton,Robert Pinsler,Andrew Fowler,Daniel Zügner,Tian Xie,Jake A. Smith,Lixin Sun,Qian Wang,Lingyu Kong,Chang Liu,Hongxia Hao,Ziheng Lu
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2405.04967
摘要

Accurate and fast prediction of materials properties is central to the digital transformation of materials design. However, the vast design space and diverse operating conditions pose significant challenges for accurately modeling arbitrary material candidates and forecasting their properties. We present MatterSim, a deep learning model actively learned from large-scale first-principles computations, for efficient atomistic simulations at first-principles level and accurate prediction of broad material properties across the periodic table, spanning temperatures from 0 to 5000 K and pressures up to 1000 GPa. Out-of-the-box, the model serves as a machine learning force field, and shows remarkable capabilities not only in predicting ground-state material structures and energetics, but also in simulating their behavior under realistic temperatures and pressures, signifying an up to ten-fold enhancement in precision compared to the prior best-in-class. This enables MatterSim to compute materials' lattice dynamics, mechanical and thermodynamic properties, and beyond, to an accuracy comparable with first-principles methods. Specifically, MatterSim predicts Gibbs free energies for a wide range of inorganic solids with near-first-principles accuracy and achieves a 15 meV/atom resolution for temperatures up to 1000K compared with experiments. This opens an opportunity to predict experimental phase diagrams of materials at minimal computational cost. Moreover, MatterSim also serves as a platform for continuous learning and customization by integrating domain-specific data. The model can be fine-tuned for atomistic simulations at a desired level of theory or for direct structure-to-property predictions, achieving high data efficiency with a reduction in data requirements by up to 97%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
龙小天完成签到,获得积分10
1秒前
科研通AI2S应助LuckyGuy采纳,获得10
2秒前
开开心心的开心应助DAGH采纳,获得30
3秒前
阿星捌完成签到 ,获得积分10
5秒前
haokeyan完成签到,获得积分10
7秒前
乐乐应助sunzhuxi采纳,获得10
9秒前
天际繁星完成签到 ,获得积分20
9秒前
chloe完成签到 ,获得积分10
11秒前
LuckyGuy完成签到,获得积分10
12秒前
MR_Z完成签到,获得积分10
12秒前
17秒前
19秒前
level完成签到,获得积分10
19秒前
wen完成签到,获得积分20
21秒前
21秒前
xyj6486完成签到,获得积分10
22秒前
superhanlei完成签到 ,获得积分10
22秒前
sunzhuxi发布了新的文献求助10
22秒前
重重重飞完成签到 ,获得积分10
23秒前
level发布了新的文献求助10
23秒前
朴实问筠完成签到 ,获得积分10
24秒前
太叔开山发布了新的文献求助10
27秒前
28秒前
万里完成签到,获得积分10
29秒前
29秒前
30秒前
31秒前
Miyya完成签到 ,获得积分10
32秒前
32秒前
悠悠完成签到,获得积分20
34秒前
丽丽呀发布了新的文献求助10
34秒前
哈哈发布了新的文献求助10
35秒前
Akim应助level采纳,获得10
35秒前
tuanheqi完成签到,获得积分0
38秒前
zyy_luck发布了新的文献求助10
38秒前
思源应助weiyu_u采纳,获得30
41秒前
CC完成签到,获得积分10
42秒前
hb完成签到,获得积分10
42秒前
lxgz完成签到,获得积分10
42秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139849
求助须知:如何正确求助?哪些是违规求助? 2790719
关于积分的说明 7796422
捐赠科研通 2447131
什么是DOI,文献DOI怎么找? 1301574
科研通“疑难数据库(出版商)”最低求助积分说明 626305
版权声明 601185