MatterSim: A Deep Learning Atomistic Model Across Elements, Temperatures and Pressures

深度学习 材料科学 人工智能 计算机科学
作者
Han Yang,Chenxi Hu,Yichi Zhou,Xixian Liu,Shi Yu,J Li,Guanzhi Li,Zekun Chen,Sichu Chen,Claudio Zeni,Matthew K. Horton,Robert Pinsler,Andrew Fowler,Daniel Zügner,Tian Xie,Jake A. Smith,Lixin Sun,Qian Wang,Lingyu Kong,Chang Liu,Hongxia Hao,Ziheng Lu
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2405.04967
摘要

Accurate and fast prediction of materials properties is central to the digital transformation of materials design. However, the vast design space and diverse operating conditions pose significant challenges for accurately modeling arbitrary material candidates and forecasting their properties. We present MatterSim, a deep learning model actively learned from large-scale first-principles computations, for efficient atomistic simulations at first-principles level and accurate prediction of broad material properties across the periodic table, spanning temperatures from 0 to 5000 K and pressures up to 1000 GPa. Out-of-the-box, the model serves as a machine learning force field, and shows remarkable capabilities not only in predicting ground-state material structures and energetics, but also in simulating their behavior under realistic temperatures and pressures, signifying an up to ten-fold enhancement in precision compared to the prior best-in-class. This enables MatterSim to compute materials' lattice dynamics, mechanical and thermodynamic properties, and beyond, to an accuracy comparable with first-principles methods. Specifically, MatterSim predicts Gibbs free energies for a wide range of inorganic solids with near-first-principles accuracy and achieves a 15 meV/atom resolution for temperatures up to 1000K compared with experiments. This opens an opportunity to predict experimental phase diagrams of materials at minimal computational cost. Moreover, MatterSim also serves as a platform for continuous learning and customization by integrating domain-specific data. The model can be fine-tuned for atomistic simulations at a desired level of theory or for direct structure-to-property predictions, achieving high data efficiency with a reduction in data requirements by up to 97%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
灵巧觅山完成签到,获得积分10
1秒前
上官若男应助Lemon采纳,获得10
4秒前
李爱国应助房谷槐采纳,获得10
4秒前
7秒前
12秒前
Owen应助丛玉林采纳,获得10
12秒前
真实的德天完成签到 ,获得积分10
13秒前
14秒前
MYW完成签到,获得积分10
14秒前
馥郁完成签到,获得积分10
15秒前
15秒前
热心的善愁完成签到,获得积分10
16秒前
Yy发布了新的文献求助10
17秒前
17秒前
Ninico发布了新的文献求助10
18秒前
19秒前
馥郁发布了新的文献求助10
20秒前
追寻奄发布了新的文献求助10
21秒前
叶泽发布了新的文献求助10
21秒前
24秒前
欧阳娜娜发布了新的文献求助10
24秒前
丛玉林发布了新的文献求助10
25秒前
kytmm2022发布了新的文献求助10
27秒前
执着皮皮虾完成签到,获得积分10
29秒前
科研通AI5应助我其实还好采纳,获得10
29秒前
科研菜鸡完成签到,获得积分10
31秒前
CipherSage应助八宝采纳,获得10
33秒前
kytmm2022完成签到,获得积分10
33秒前
丘比特应助执着皮皮虾采纳,获得10
35秒前
完美世界应助馥郁采纳,获得10
35秒前
Ava应助伶俐的冥幽采纳,获得10
37秒前
TZMY发布了新的文献求助10
41秒前
41秒前
42秒前
归尘应助秀丽笑容采纳,获得10
43秒前
45秒前
45秒前
lichunlei发布了新的文献求助10
48秒前
49秒前
失眠醉易应助乐乐采纳,获得30
49秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
T/CAB 0344-2024 重组人源化胶原蛋白内毒素去除方法 1000
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3775612
求助须知:如何正确求助?哪些是违规求助? 3321229
关于积分的说明 10204285
捐赠科研通 3036074
什么是DOI,文献DOI怎么找? 1665997
邀请新用户注册赠送积分活动 797213
科研通“疑难数据库(出版商)”最低求助积分说明 757766