An intelligent process parameters optimization approach for directed energy deposition of nickel-based alloys using deep reinforcement learning

材料科学 沉积(地质) 强化学习 过程(计算) 钢筋 能量(信号处理) 工艺优化 工艺工程 冶金 机械工程 复合材料 人工智能 化学工程 计算机科学 工程类 生物 统计 操作系统 古生物学 数学 沉积物
作者
Sheng‐Cai Shi,Xuewen Li,Zhongan Wang,Hai Chang,Yeping Wu,Rui Yang,Zirong Zhai
出处
期刊:Journal of Manufacturing Processes [Elsevier BV]
卷期号:120: 1130-1140
标识
DOI:10.1016/j.jmapro.2024.05.001
摘要

Directed Energy Deposition (DED) is crucial in the ongoing industrial revolution, providing a unique ability to fabricate high-quality components with complex shapes. However, the determination of key process parameters, such as scan sequence, laser power, and scanning speed, often relies on offline trial-and-error or heuristic methods. These methods are not only suboptimal but also lack generalizability. A major challenge is the non-uniform temperature distribution during manufacturing, which affects the uniformity of the mechanical properties. To overcome these challenges, we have developed a framework based on Deep Reinforcement Learning (DRL). This framework dynamically adjusts process parameters to achieve an optimal control policy. Additionally, we introduce a cost-effective temperature simulation model of the deposition process. This model is particularly useful for researchers testing the proximal policy optimization algorithm. The experimental results demonstrate that DRL policies substantially improve temperature uniformity in Inconel 718, enhancing hardness variability with improvements of 31.8 % and 27.1 % in horizontal and vertical building directions, respectively. This research marks an important step toward achieving a highly intelligent and automated optimization of process parameters. It also proves to be robust and computationally efficient for future online implementation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
duanhahaha完成签到,获得积分10
刚刚
刚刚
haha发布了新的文献求助10
1秒前
1秒前
1秒前
小蘑菇应助大方的电灯胆采纳,获得10
1秒前
455完成签到,获得积分20
2秒前
2秒前
2秒前
2秒前
烟花易冷发布了新的文献求助10
2秒前
Lucas应助hsy采纳,获得10
3秒前
量子星尘发布了新的文献求助10
3秒前
充电宝应助THEEVE采纳,获得10
3秒前
矛盾螺旋完成签到,获得积分20
4秒前
wjm完成签到,获得积分10
5秒前
夏天发布了新的文献求助10
6秒前
思源应助qsxy采纳,获得10
6秒前
6秒前
娜娜发布了新的文献求助10
7秒前
7秒前
smkmfy发布了新的文献求助10
7秒前
打工科研发布了新的文献求助10
7秒前
8秒前
8秒前
9秒前
酷波er应助haha采纳,获得10
9秒前
9秒前
星空发布了新的文献求助10
9秒前
9秒前
9秒前
10秒前
自觉的擎宇完成签到,获得积分10
10秒前
友好山菡发布了新的文献求助10
10秒前
10秒前
NexusExplorer应助聪慧代天采纳,获得10
11秒前
我是人完成签到,获得积分10
11秒前
11秒前
Jiang湫完成签到,获得积分10
11秒前
北冥有鱼完成签到,获得积分10
12秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961223
求助须知:如何正确求助?哪些是违规求助? 3507496
关于积分的说明 11136509
捐赠科研通 3239958
什么是DOI,文献DOI怎么找? 1790571
邀请新用户注册赠送积分活动 872449
科研通“疑难数据库(出版商)”最低求助积分说明 803186