清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Start From Zero: Triple Set Prediction for Automatic Knowledge Graph Completion

计算机科学 缺少数据 集合(抽象数据类型) 嵌入 公制(单位) 图形 排名(信息检索) 任务(项目管理) 人工智能 理论计算机科学 数据挖掘 机器学习 运营管理 管理 经济 程序设计语言
作者
Wen Zhang,Yajing Xu,Peng Ye,Zhiwei Huang,Zezhong Xu,Jiaoyan Chen,Jeff Z. Pan,Huajun Chen
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14
标识
DOI:10.1109/tkde.2024.3399832
摘要

Knowledge graph (KG) completion aims to find out missing triples in a KG. Some tasks, such as link prediction and instance completion, have been proposed for KG completion. They are triple-level tasks with some elements in a missing triple given to predict the missing element of the triple. However, knowing some elements of the missing triple in advance is not always a realistic setting. In this paper, we propose a novel graph-level automatic KG completion task called Triple Set Prediction (TSP) which assumes none of the elements in the missing triples is given. TSP is to predict a set of missing triples given a set of known triples. To properly and accurately evaluate this new task, we propose 4 evaluation metrics including 3 classification metrics and 1 ranking metric, considering both the partial-open-world and the closed-world assumptions. Furthermore, to tackle the huge candidate triples for prediction, we propose a novel and efficient subgraph-based method GPHT that can predict the triple set fast. To fairly compare the TSP results, we also propose two types of methods RuleTensor-TSP and KGE-TSP applying the existing rule- and embedding-based methods for TSP as baselines. During experiments, we evaluate the proposed methods on two datasets extracted from Wikidata following the relation-similarity partial-open-world assumption proposed by us, and also create a complete family data set to evaluate TSP results following the closed-world assumption. Results prove that the methods can successfully generate a set of missing triples and achieve reasonable scores on the new task, and GPHT performs better than the baselines with significantly shorter prediction time. The datasets and code for experiments are available at https://github.com/zjukg/GPHT-for-TSP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fareless完成签到 ,获得积分10
13秒前
HLT完成签到 ,获得积分10
44秒前
嬗变的天秤完成签到,获得积分10
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
4分钟前
4分钟前
科研通AI2S应助liudy采纳,获得10
4分钟前
4分钟前
QiaoHL完成签到 ,获得积分10
4分钟前
4分钟前
5分钟前
5分钟前
6分钟前
6分钟前
十二完成签到 ,获得积分10
6分钟前
6分钟前
Airi发布了新的文献求助10
6分钟前
6分钟前
7分钟前
7分钟前
7分钟前
Ava应助Airi采纳,获得10
7分钟前
Tiger发布了新的文献求助10
7分钟前
Tiger完成签到,获得积分10
7分钟前
7分钟前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139610
求助须知:如何正确求助?哪些是违规求助? 2790479
关于积分的说明 7795355
捐赠科研通 2446958
什么是DOI,文献DOI怎么找? 1301526
科研通“疑难数据库(出版商)”最低求助积分说明 626259
版权声明 601176