B2CNet: A Progressive Change Boundary-to-Center Refinement Network for Multi-Temporal Remote Sensing Images Change Detection

变更检测 计算机科学 边界(拓扑) 遥感 中心(范畴论) 计算机视觉 人工智能 地质学 数学 数学分析 化学 结晶学
作者
Zhiqi Zhang,Liyang Bao,Shao Xiang,Guangqi Xie,Rong Gao
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:17: 11322-11338 被引量:1
标识
DOI:10.1109/jstars.2024.3409072
摘要

Change detection is an important method of analyzing information about changes in geographical features. However, existing deep learning feature difference methods often lead to the loss of detailed information. Differences in features can arise from factors like illumination or geometric variations rather than actual change regions, resulting in inaccurate change detection. This leads to poor detection of fine-grained boundaries and internal hole problems. To alleviate this, we propose a novel change detection network guided by change boundary awareness and incorporating the concept of boundary-to-center. Our network introduces a change boundary-aware module (CBM) to capture boundary information of change regions. This module enhances boundaries, reducing the influence of noise in feature differences and providing rich contextual information to improve the accuracy of change boundaries. Additionally, we propose a bi-temporal feature aggregation module (BFAM) based on spatial-temporal features. The BFAM aggregates multiple receptive fields features and complements texture information. Both modules utilize the SimAM attention mechanism to enhance the fine-grained nature of the features. In addition, we introduce a deep feature extraction module (DFEM) to extract deep features and minimize information loss during the decoupling process. The proposed change detection network in this paper is guided by change boundary perception, progressively integrating semantic and spatial texture information to refine edges and enhance internal integrity. The performance and efficiency of B2CNet have been validated on four publicly available remote sensing image change detection datasets. Through extensive experiments, the effectiveness of the proposed method has been demonstrated. For example, in terms of IOU for LEVIR, WHU, SYSU and HRCUS datasets, the improvements compared to the baseline are 1.89%, 2.86%, 4.70% and 3.79%, respectively. The code of the proposed approach can be found at https://github.com/bao11seven/B2CNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
港岛妹妹应助科研通管家采纳,获得20
1秒前
领导范儿应助科研通管家采纳,获得10
1秒前
1秒前
Orange应助科研通管家采纳,获得10
1秒前
1秒前
王路飞完成签到,获得积分10
1秒前
SciGPT应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
cure发布了新的文献求助20
2秒前
研友_VZG7GZ应助霸气的梦露采纳,获得10
2秒前
lsf发布了新的文献求助10
3秒前
3秒前
Nancy完成签到,获得积分10
4秒前
4秒前
4秒前
4秒前
鲤鱼访天完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
wu发布了新的文献求助10
7秒前
赘婿应助会飞的野马采纳,获得10
8秒前
8秒前
9秒前
Free_Dobby发布了新的文献求助10
9秒前
荔枝波波加油完成签到 ,获得积分10
9秒前
10秒前
英勇兔子完成签到 ,获得积分10
11秒前
wanghui发布了新的文献求助10
11秒前
大模型应助tg2024采纳,获得10
11秒前
天线宝宝关注了科研通微信公众号
11秒前
12秒前
xyz完成签到,获得积分10
12秒前
14秒前
wang发布了新的文献求助10
14秒前
14秒前
程程程完成签到,获得积分10
15秒前
柿饼发布了新的文献求助10
16秒前
111发布了新的文献求助10
16秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3262101
求助须知:如何正确求助?哪些是违规求助? 2902863
关于积分的说明 8322892
捐赠科研通 2572852
什么是DOI,文献DOI怎么找? 1397880
科研通“疑难数据库(出版商)”最低求助积分说明 653941
邀请新用户注册赠送积分活动 632506