已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

B2CNet: A Progressive Change Boundary-to-Center Refinement Network for Multi-Temporal Remote Sensing Images Change Detection

变更检测 计算机科学 边界(拓扑) 遥感 中心(范畴论) 计算机视觉 人工智能 地质学 数学 数学分析 化学 结晶学
作者
Zhiqi Zhang,Liyang Bao,Shao Xiang,Guangqi Xie,Rong Gao
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:17: 11322-11338 被引量:3
标识
DOI:10.1109/jstars.2024.3409072
摘要

Change detection is an important method of analyzing information about changes in geographical features. However, existing deep learning feature difference methods often lead to the loss of detailed information. Differences in features can arise from factors like illumination or geometric variations rather than actual change regions, resulting in inaccurate change detection. This leads to poor detection of fine-grained boundaries and internal hole problems. To alleviate this, we propose a novel change detection network guided by change boundary awareness and incorporating the concept of boundary-to-center. Our network introduces a change boundary-aware module (CBM) to capture boundary information of change regions. This module enhances boundaries, reducing the influence of noise in feature differences and providing rich contextual information to improve the accuracy of change boundaries. Additionally, we propose a bi-temporal feature aggregation module (BFAM) based on spatial-temporal features. The BFAM aggregates multiple receptive fields features and complements texture information. Both modules utilize the SimAM attention mechanism to enhance the fine-grained nature of the features. In addition, we introduce a deep feature extraction module (DFEM) to extract deep features and minimize information loss during the decoupling process. The proposed change detection network in this paper is guided by change boundary perception, progressively integrating semantic and spatial texture information to refine edges and enhance internal integrity. The performance and efficiency of B2CNet have been validated on four publicly available remote sensing image change detection datasets. Through extensive experiments, the effectiveness of the proposed method has been demonstrated. For example, in terms of IOU for LEVIR, WHU, SYSU and HRCUS datasets, the improvements compared to the baseline are 1.89%, 2.86%, 4.70% and 3.79%, respectively. The code of the proposed approach can be found at https://github.com/bao11seven/B2CNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
农夫发布了新的文献求助10
5秒前
5秒前
5秒前
澄子完成签到 ,获得积分10
6秒前
缓慢的凝云完成签到,获得积分10
7秒前
8秒前
8秒前
一个有点长的序完成签到 ,获得积分10
9秒前
ljy阿完成签到 ,获得积分10
10秒前
8531发布了新的文献求助10
10秒前
11秒前
11秒前
11秒前
SiO2完成签到 ,获得积分10
13秒前
苏打完成签到 ,获得积分10
13秒前
nanfang完成签到 ,获得积分10
15秒前
Manbo发布了新的文献求助10
15秒前
阿秋秋秋发布了新的文献求助10
17秒前
19秒前
Manbo完成签到,获得积分10
22秒前
今后应助little forest采纳,获得10
23秒前
举个栗子8完成签到 ,获得积分10
25秒前
CodeCraft应助XXH采纳,获得10
28秒前
30秒前
30秒前
30秒前
青柠檬关注了科研通微信公众号
31秒前
crown完成签到,获得积分10
32秒前
ruer完成签到,获得积分20
33秒前
庾新竹发布了新的文献求助10
33秒前
芊芊发布了新的文献求助10
36秒前
36秒前
sunny66cai发布了新的文献求助10
37秒前
SciGPT应助默默洋葱采纳,获得10
40秒前
活泼的阁发布了新的文献求助10
41秒前
量子星尘发布了新的文献求助10
41秒前
42秒前
三斤完成签到 ,获得积分10
45秒前
45秒前
46秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959927
求助须知:如何正确求助?哪些是违规求助? 3506124
关于积分的说明 11128074
捐赠科研通 3238096
什么是DOI,文献DOI怎么找? 1789502
邀请新用户注册赠送积分活动 871803
科研通“疑难数据库(出版商)”最低求助积分说明 803024