Automatic detection of cognitive impairment in patients with white matter hyperintensity and causal analysis of related factors using artificial intelligence of MRI

高强度 认知障碍 认知 人工智能 白质 计算机科学 磁共振成像 模式识别(心理学) 心理学 机器学习 医学 神经科学 放射科
作者
Junbang Feng,Dongming Hui,Qingqing Zheng,Yi Guo,Yuwei Xia,Feng Shi,Qing Zhou,Fei Yu,Xiaojing He,Shike Wang,Chuanming Li
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:178: 108684-108684 被引量:10
标识
DOI:10.1016/j.compbiomed.2024.108684
摘要

White matter hyperintensity (WMH) is a common feature of brain aging, often linked with cognitive decline and dementia. This study aimed to employ deep learning and radiomics to develop models for detecting cognitive impairment in WMH patients and to analyse the causal relationships among cognitive impairment and related factors. A total of 79 WMH patients from hospital 1 were randomly divided into a training set (62 patients) and a testing set (17 patients). Additionally, 29 patients from hospital 2 were included as an independent testing set. All participants underwent formal neuropsychological assessments to determine cognitive status. Automated identification and segmentation of WMH were conducted using VB-net, with extraction of radiomics features from cortex, white matter, and nuclei. Four machine learning classifiers were trained on the training set and validated on the testing set to detect cognitive impairment. Model performances were evaluated and compared. Causal analyses were conducted among cortex, white matter, nuclei alterations, and cognitive impairment. Among the models, the logistic regression (LR) model based on white matter features demonstrated the highest performance, achieving an AUC of 0.819 in the external test dataset. Causal analyses indicated that age, education level, alterations in cortex, white matter, and nuclei were causal factors of cognitive impairment. The LR model based on white matter features exhibited high accuracy in detecting cognitive impairment in WMH patients. Furthermore, the possible causal relationships among alterations in cortex, white matter, nuclei, and cognitive impairment were elucidated.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zing完成签到,获得积分10
刚刚
iwonder发布了新的文献求助10
刚刚
贺贺完成签到,获得积分10
刚刚
刚刚
HOAN应助even采纳,获得30
刚刚
刚刚
学术黄金完成签到,获得积分10
1秒前
1秒前
JamesPei应助橘子小狗采纳,获得10
1秒前
1秒前
wang发布了新的文献求助10
2秒前
2秒前
wanci应助小冰采纳,获得10
2秒前
3秒前
量子星尘发布了新的文献求助30
3秒前
大个应助bling采纳,获得10
3秒前
雨且青发布了新的文献求助10
3秒前
wwk发布了新的文献求助10
3秒前
星苒完成签到,获得积分20
4秒前
Merciful完成签到 ,获得积分10
4秒前
洪艳完成签到,获得积分10
5秒前
身柏关注了科研通微信公众号
5秒前
6秒前
6秒前
研友_VZG7GZ应助橙子采纳,获得10
6秒前
yy发布了新的文献求助10
6秒前
6秒前
轻松囧发布了新的文献求助10
7秒前
7秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
Akim应助何小芳采纳,获得10
8秒前
星苒发布了新的文献求助10
8秒前
炙热百川发布了新的文献求助10
9秒前
无敌咖啡豆完成签到,获得积分10
9秒前
9秒前
萍苹平完成签到,获得积分10
9秒前
英俊的铭应助rqtq2采纳,获得10
9秒前
John完成签到,获得积分10
9秒前
范拽拽发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719050
求助须知:如何正确求助?哪些是违规求助? 5254852
关于积分的说明 15287660
捐赠科研通 4869006
什么是DOI,文献DOI怎么找? 2614559
邀请新用户注册赠送积分活动 1564435
关于科研通互助平台的介绍 1521807