材料科学
阳极
超级电容器
电容
储能
电极
碳纤维
介孔材料
纳米技术
电化学
兴奋剂
化学工程
石墨
多孔性
光电子学
复合材料
化学
复合数
有机化学
催化作用
工程类
功率(物理)
物理
物理化学
量子力学
作者
Yang Yin,Haisheng Du,Aocheng Wang,Changbo Lu,Dong Sun,C. Lu,Xilong Wang,Zhihua Xiao,Xinlong Ma
标识
DOI:10.1016/j.jcis.2024.05.237
摘要
The orientation-guidance coupled with in-situ activation methodology is developed to synthesize the N-doped porous carbon (NPC) with well-developed porosity and high specific surface area, using coal pitch as a carbon precursor. The orientation-guidance and activation are dedicated to generating microporous and mesoporous channels, respectively. The in-situ N incorporation into the carbon skeleton is realized along with the formation of porous carbon (PC), ensuring the uniformity of N doping. As an electrode material of supercapacitor, benefiting from the robust hexagon-like building block decorated with micro-mesoporous channels and N doping, NPC electrode affords a significant improvement in capacitive energy-storage performance, achieving a specific capacitance of up to 333F g−1 at 1 A/g, which far exceeds those of PC and activated carbon. Notably, even under high mass loading of 10 mg cm−2, the NPC maintains a satisfactory capacitance of 258F g−1 at 1 A/g. When employed as the anode in Li-ion capacitor (LIC), apart from exhibiting enhanced anode behavior compared to graphite anode, NPC also delivers exceptional cyclability. Furthermore, density functional theory calculations have validated the enhanced electrical conductivity and Li storage ability contributed by N doping, providing a theoretical foundation for the observed improvements in electrochemical performance. A full LIC configured with NPC anode delivers extraordinary Ragone performance and outstanding cyclability. This work also proposes a feasible way to realize the oriented conversion of coal pitch into high-performance electrode materials for electrochemical energy-storage devices.
科研通智能强力驱动
Strongly Powered by AbleSci AI