Digital reference object toolkit of breast DCE MRI for quantitative evaluation of image reconstruction and analysis methods

计算机科学 加权 正规化(语言学) 人工智能 模式识别(心理学) 计算机视觉 数据挖掘 放射科 医学
作者
Jonghyun Bae,Zhengguo Tan,Eddy Solomon,Zhengnan Huang,Laura Heacock,Linda Moy,Florian Knöll,Sungheon Kim
出处
期刊:Magnetic Resonance in Medicine [Wiley]
卷期号:92 (4): 1728-1742
标识
DOI:10.1002/mrm.30152
摘要

Abstract Purpose To develop a digital reference object (DRO) toolkit to generate realistic breast DCE‐MRI data for quantitative assessment of image reconstruction and data analysis methods. Methods A simulation framework in a form of DRO toolkit has been developed using the ultrafast and conventional breast DCE‐MRI data of 53 women with malignant ( n = 25) or benign ( n = 28) lesions. We segmented five anatomical regions and performed pharmacokinetic analysis to determine the ranges of pharmacokinetic parameters for each segmented region. A database of the segmentations and their pharmacokinetic parameters is included in the DRO toolkit that can generate a large number of realistic breast DCE‐MRI data. We provide two potential examples for our DRO toolkit: assessing the accuracy of an image reconstruction method using undersampled simulated radial k‐space data and assessing the impact of the field inhomogeneity on estimated parameters. Results The estimated pharmacokinetic parameters for each region showed agreement with previously reported values. For the assessment of the reconstruction method, it was found that the temporal regularization resulted in significant underestimation of estimated parameters by up to 57% and 10% with the weighting factor λ = 0.1 and 0.01, respectively. We also demonstrated that spatial discrepancy of and increase to about 33% and 51% without correction for field. Conclusion We have developed a DRO toolkit that includes realistic morphology of tumor lesions along with the expected pharmacokinetic parameter ranges. This simulation framework can generate many images for quantitative assessment of DCE‐MRI reconstruction and analysis methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助xin采纳,获得10
1秒前
高高发布了新的文献求助10
1秒前
111版发布了新的文献求助10
1秒前
碳烤土豆发布了新的文献求助10
2秒前
Lucas应助SaSa采纳,获得10
2秒前
3秒前
Thi发布了新的文献求助10
3秒前
科研通AI6应助笑语解清愁采纳,获得10
4秒前
nanashi发布了新的文献求助10
5秒前
长柏发布了新的文献求助10
6秒前
6秒前
6秒前
尧章完成签到,获得积分20
6秒前
yao完成签到,获得积分10
6秒前
Bella完成签到,获得积分20
6秒前
科研通AI6应助迷人绿柏采纳,获得30
8秒前
无花果应助科研通管家采纳,获得10
8秒前
情怀应助科研通管家采纳,获得10
8秒前
Jasper应助科研通管家采纳,获得10
8秒前
今后应助科研通管家采纳,获得10
8秒前
思源应助科研通管家采纳,获得10
8秒前
酷波er应助科研通管家采纳,获得10
8秒前
桐桐应助科研通管家采纳,获得10
8秒前
李爱国应助科研通管家采纳,获得10
8秒前
英俊的铭应助科研通管家采纳,获得10
8秒前
李爱国应助科研通管家采纳,获得10
8秒前
核桃应助科研通管家采纳,获得10
8秒前
CipherSage应助科研通管家采纳,获得30
8秒前
Cloud完成签到,获得积分10
8秒前
隐形曼青应助zpz采纳,获得10
8秒前
在水一方应助科研通管家采纳,获得10
9秒前
上官若男应助科研通管家采纳,获得10
9秒前
无极微光应助科研通管家采纳,获得20
9秒前
9秒前
在水一方应助科研通管家采纳,获得10
9秒前
BowieHuang应助科研通管家采纳,获得10
9秒前
丘比特应助科研通管家采纳,获得10
9秒前
Owen应助科研通管家采纳,获得10
9秒前
Jared应助科研通管家采纳,获得10
9秒前
xu应助科研通管家采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642218
求助须知:如何正确求助?哪些是违规求助? 4758455
关于积分的说明 15016860
捐赠科研通 4800783
什么是DOI,文献DOI怎么找? 2566211
邀请新用户注册赠送积分活动 1524307
关于科研通互助平台的介绍 1483909