Digital reference object toolkit of breast DCE MRI for quantitative evaluation of image reconstruction and analysis methods

计算机科学 加权 正规化(语言学) 人工智能 模式识别(心理学) 计算机视觉 数据挖掘 放射科 医学
作者
Jonghyun Bae,Zhengguo Tan,Eddy Solomon,Zhengnan Huang,Laura Heacock,Linda Moy,Florian Knöll,Sungheon Kim
出处
期刊:Magnetic Resonance in Medicine [Wiley]
卷期号:92 (4): 1728-1742
标识
DOI:10.1002/mrm.30152
摘要

Abstract Purpose To develop a digital reference object (DRO) toolkit to generate realistic breast DCE‐MRI data for quantitative assessment of image reconstruction and data analysis methods. Methods A simulation framework in a form of DRO toolkit has been developed using the ultrafast and conventional breast DCE‐MRI data of 53 women with malignant ( n = 25) or benign ( n = 28) lesions. We segmented five anatomical regions and performed pharmacokinetic analysis to determine the ranges of pharmacokinetic parameters for each segmented region. A database of the segmentations and their pharmacokinetic parameters is included in the DRO toolkit that can generate a large number of realistic breast DCE‐MRI data. We provide two potential examples for our DRO toolkit: assessing the accuracy of an image reconstruction method using undersampled simulated radial k‐space data and assessing the impact of the field inhomogeneity on estimated parameters. Results The estimated pharmacokinetic parameters for each region showed agreement with previously reported values. For the assessment of the reconstruction method, it was found that the temporal regularization resulted in significant underestimation of estimated parameters by up to 57% and 10% with the weighting factor λ = 0.1 and 0.01, respectively. We also demonstrated that spatial discrepancy of and increase to about 33% and 51% without correction for field. Conclusion We have developed a DRO toolkit that includes realistic morphology of tumor lesions along with the expected pharmacokinetic parameter ranges. This simulation framework can generate many images for quantitative assessment of DCE‐MRI reconstruction and analysis methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助科研通管家采纳,获得10
刚刚
完美世界应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
1秒前
ccm应助科研通管家采纳,获得20
1秒前
Owen应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
huang发布了新的文献求助10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
上官若男应助科研通管家采纳,获得20
1秒前
烟花应助科研通管家采纳,获得10
1秒前
所所应助科研通管家采纳,获得10
1秒前
终梦应助科研通管家采纳,获得30
1秒前
NexusExplorer应助科研通管家采纳,获得10
1秒前
慕青应助科研通管家采纳,获得10
1秒前
Hello应助科研通管家采纳,获得10
1秒前
bkagyin应助科研通管家采纳,获得10
2秒前
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
ccm应助科研通管家采纳,获得10
2秒前
xxfsx应助科研通管家采纳,获得10
2秒前
科目三应助科研通管家采纳,获得10
2秒前
完美又槐应助科研通管家采纳,获得10
2秒前
英姑应助科研通管家采纳,获得10
2秒前
3秒前
lzr发布了新的文献求助10
3秒前
李爱国应助彼岸采纳,获得10
4秒前
hhh关注了科研通微信公众号
4秒前
李健的粉丝团团长应助sss采纳,获得10
4秒前
5秒前
5秒前
5秒前
6秒前
幽默的访冬完成签到,获得积分10
6秒前
浮游应助无足鸟采纳,获得10
7秒前
科研通AI6应助百杜采纳,获得10
7秒前
犹豫的归尘完成签到,获得积分10
7秒前
CipherSage应助shaishai采纳,获得10
7秒前
耶斯发布了新的文献求助10
8秒前
刘佳慧完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5288354
求助须知:如何正确求助?哪些是违规求助? 4440235
关于积分的说明 13824120
捐赠科研通 4322496
什么是DOI,文献DOI怎么找? 2372594
邀请新用户注册赠送积分活动 1368040
关于科研通互助平台的介绍 1331818