Digital reference object toolkit of breast DCE MRI for quantitative evaluation of image reconstruction and analysis methods

计算机科学 加权 正规化(语言学) 人工智能 模式识别(心理学) 计算机视觉 数据挖掘 放射科 医学
作者
Jonghyun Bae,Zhengguo Tan,Eddy Solomon,Zhengnan Huang,Laura Heacock,Linda Moy,Florian Knöll,Sungheon Kim
出处
期刊:Magnetic Resonance in Medicine [Wiley]
卷期号:92 (4): 1728-1742
标识
DOI:10.1002/mrm.30152
摘要

Abstract Purpose To develop a digital reference object (DRO) toolkit to generate realistic breast DCE‐MRI data for quantitative assessment of image reconstruction and data analysis methods. Methods A simulation framework in a form of DRO toolkit has been developed using the ultrafast and conventional breast DCE‐MRI data of 53 women with malignant ( n = 25) or benign ( n = 28) lesions. We segmented five anatomical regions and performed pharmacokinetic analysis to determine the ranges of pharmacokinetic parameters for each segmented region. A database of the segmentations and their pharmacokinetic parameters is included in the DRO toolkit that can generate a large number of realistic breast DCE‐MRI data. We provide two potential examples for our DRO toolkit: assessing the accuracy of an image reconstruction method using undersampled simulated radial k‐space data and assessing the impact of the field inhomogeneity on estimated parameters. Results The estimated pharmacokinetic parameters for each region showed agreement with previously reported values. For the assessment of the reconstruction method, it was found that the temporal regularization resulted in significant underestimation of estimated parameters by up to 57% and 10% with the weighting factor λ = 0.1 and 0.01, respectively. We also demonstrated that spatial discrepancy of and increase to about 33% and 51% without correction for field. Conclusion We have developed a DRO toolkit that includes realistic morphology of tumor lesions along with the expected pharmacokinetic parameter ranges. This simulation framework can generate many images for quantitative assessment of DCE‐MRI reconstruction and analysis methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
橘子橙子发布了新的文献求助10
1秒前
1秒前
文正熊发布了新的文献求助10
1秒前
天天快乐应助认真的画板采纳,获得10
1秒前
dropofwater发布了新的文献求助30
2秒前
代渺完成签到,获得积分10
2秒前
风色四叶草完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
qdr发布了新的文献求助30
2秒前
36456657应助哦耶采纳,获得10
3秒前
3秒前
怕孤独的香蕉完成签到,获得积分10
3秒前
zg发布了新的文献求助10
3秒前
3秒前
4秒前
baobaoxiong完成签到,获得积分10
4秒前
4秒前
4秒前
隐形曼青应助雨碎寒江采纳,获得10
4秒前
1111111完成签到,获得积分10
6秒前
曦颜完成签到 ,获得积分10
6秒前
6秒前
三三发布了新的文献求助10
6秒前
6秒前
wwww发布了新的文献求助10
6秒前
轻松惜筠完成签到,获得积分10
7秒前
7秒前
8秒前
彼岸完成签到,获得积分10
8秒前
研友_pLw3vL发布了新的文献求助10
8秒前
Young完成签到,获得积分10
8秒前
科研小白发布了新的文献求助10
9秒前
HeWang发布了新的文献求助10
9秒前
Nia发布了新的文献求助10
9秒前
Akim应助wwww采纳,获得10
9秒前
9秒前
9秒前
10秒前
无花果应助133采纳,获得10
10秒前
JiangZaiqing发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667772
求助须知:如何正确求助?哪些是违规求助? 4887765
关于积分的说明 15121847
捐赠科研通 4826643
什么是DOI,文献DOI怎么找? 2584209
邀请新用户注册赠送积分活动 1538157
关于科研通互助平台的介绍 1496386