LWS-YOLOv7: A Lightweight Water-Surface Object-Detection Model

环境科学 曲面(拓扑) 地表水 计算机科学 数学 几何学 环境工程
作者
Zheng-zhong Li,Ren Hongxiang,Yang Xiao,Li Wang,Jian Sun
出处
期刊:Journal of Marine Science and Engineering [MDPI AG]
卷期号:12 (6): 861-861 被引量:1
标识
DOI:10.3390/jmse12060861
摘要

In inland waterways, there is a high density of various objects, with a predominance of small objects, which can easily affect navigation safety. To improve the navigation safety of inland ships, this paper proposes a new lightweight water-surface object-detection model named LWS-YOLOv7, which is based on the baseline model YOLOv7. Firstly, the localization loss function is improved and the w-CIoU function is introduced to reduce the model’s sensitivity to position deviations of small objects and to improve the allocation accuracy of positive and negative sample labels. Secondly, a new receptive field amplification module named GSPPCSPC is proposed to reduce the model’s parameters and enhance its receptive field. Thirdly, a small-object feature-fusion layer, P2, is added to improve the recall rate of small objects. Finally, based on the LAMP model pruning method, the weights with lower importance are pruned to simplify the parameters and computational complexity of the model, facilitating the deployment of the model on shipborne devices. The experimental results demonstrate that, compared to the original YOLOv7 model, the map of LWS-YOLOv7 increased by 3.1%, the parameters decreased by 38.8%, and the GFLOPS decreased by 28.8%. Moreover, the model not only has better performance and higher speed for input images of different sizes, but it can also be applied to different meteorological conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
Draven完成签到 ,获得积分10
1秒前
tmpstlml发布了新的文献求助10
2秒前
张红梨完成签到,获得积分10
2秒前
迷迷完成签到,获得积分20
3秒前
3秒前
科研通AI2S应助chen采纳,获得10
4秒前
穿山甲坐飞机完成签到 ,获得积分10
4秒前
5秒前
美丽的芷烟给美丽的芷烟的求助进行了留言
5秒前
科研通AI5应助经年采纳,获得10
5秒前
5秒前
勤劳晓亦应助木头人采纳,获得10
6秒前
科研通AI5应助想瘦的海豹采纳,获得10
6秒前
7秒前
科研通AI5应助adazbd采纳,获得10
7秒前
bkagyin应助皮皮桂采纳,获得10
7秒前
8秒前
重要的哈密瓜完成签到 ,获得积分10
8秒前
会飞的云完成签到 ,获得积分10
9秒前
9秒前
毕不了业的凡阿哥完成签到,获得积分10
9秒前
野子发布了新的文献求助10
9秒前
berry完成签到,获得积分10
10秒前
11秒前
LUNWENREQUEST发布了新的文献求助10
11秒前
大模型应助匹诺曹采纳,获得10
12秒前
ding应助过时的又槐采纳,获得10
13秒前
16秒前
鄙视注册完成签到,获得积分10
17秒前
17秒前
18秒前
18秒前
落寞溪灵完成签到 ,获得积分10
20秒前
玖玖柒idol完成签到,获得积分10
20秒前
曌虞完成签到,获得积分10
20秒前
21秒前
啥,这都是啥完成签到,获得积分10
21秒前
皮皮桂发布了新的文献求助10
22秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808