LWS-YOLOv7: A Lightweight Water-Surface Object-Detection Model

环境科学 曲面(拓扑) 地表水 计算机科学 数学 几何学 环境工程
作者
Zheng-zhong Li,Ren Hongxiang,Yang Xiao,Li Wang,Jian Sun
出处
期刊:Journal of Marine Science and Engineering [MDPI AG]
卷期号:12 (6): 861-861 被引量:1
标识
DOI:10.3390/jmse12060861
摘要

In inland waterways, there is a high density of various objects, with a predominance of small objects, which can easily affect navigation safety. To improve the navigation safety of inland ships, this paper proposes a new lightweight water-surface object-detection model named LWS-YOLOv7, which is based on the baseline model YOLOv7. Firstly, the localization loss function is improved and the w-CIoU function is introduced to reduce the model’s sensitivity to position deviations of small objects and to improve the allocation accuracy of positive and negative sample labels. Secondly, a new receptive field amplification module named GSPPCSPC is proposed to reduce the model’s parameters and enhance its receptive field. Thirdly, a small-object feature-fusion layer, P2, is added to improve the recall rate of small objects. Finally, based on the LAMP model pruning method, the weights with lower importance are pruned to simplify the parameters and computational complexity of the model, facilitating the deployment of the model on shipborne devices. The experimental results demonstrate that, compared to the original YOLOv7 model, the map of LWS-YOLOv7 increased by 3.1%, the parameters decreased by 38.8%, and the GFLOPS decreased by 28.8%. Moreover, the model not only has better performance and higher speed for input images of different sizes, but it can also be applied to different meteorological conditions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
陈宏博应助linda采纳,获得10
刚刚
ira发布了新的文献求助10
刚刚
刚刚
执着的冬瓜完成签到 ,获得积分10
刚刚
彩色发布了新的文献求助10
1秒前
1秒前
dimension完成签到,获得积分10
1秒前
今后应助张张采纳,获得10
1秒前
谦让的博发布了新的文献求助10
1秒前
迷路幼枫完成签到 ,获得积分10
2秒前
nzlatto完成签到 ,获得积分10
2秒前
bbbbhr发布了新的文献求助10
2秒前
2秒前
OriC发布了新的文献求助10
2秒前
重要的大有完成签到,获得积分10
2秒前
言屿完成签到,获得积分10
2秒前
苗浩阳发布了新的文献求助10
3秒前
www发布了新的文献求助10
3秒前
科研通AI6应助MA采纳,获得10
4秒前
01发布了新的文献求助10
4秒前
英姑应助k_1采纳,获得10
4秒前
深情安青应助努力的学采纳,获得10
4秒前
4秒前
monned发布了新的文献求助10
5秒前
上官老黑发布了新的文献求助10
5秒前
5秒前
滴滴答答发布了新的文献求助20
5秒前
white发布了新的文献求助10
6秒前
6秒前
英俊的铭应助《子非鱼》采纳,获得10
7秒前
OriC完成签到,获得积分10
7秒前
7秒前
7秒前
传奇3应助段新杰采纳,获得10
8秒前
Caroline发布了新的文献求助10
8秒前
9秒前
就是我完成签到,获得积分10
9秒前
9秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5578243
求助须知:如何正确求助?哪些是违规求助? 4663137
关于积分的说明 14744830
捐赠科研通 4603883
什么是DOI,文献DOI怎么找? 2526739
邀请新用户注册赠送积分活动 1496343
关于科研通互助平台的介绍 1465712