LWS-YOLOv7: A Lightweight Water-Surface Object-Detection Model

环境科学 曲面(拓扑) 地表水 计算机科学 数学 几何学 环境工程
作者
Zheng-zhong Li,Ren Hongxiang,Yang Xiao,Li Wang,Jian Sun
出处
期刊:Journal of Marine Science and Engineering [MDPI AG]
卷期号:12 (6): 861-861 被引量:1
标识
DOI:10.3390/jmse12060861
摘要

In inland waterways, there is a high density of various objects, with a predominance of small objects, which can easily affect navigation safety. To improve the navigation safety of inland ships, this paper proposes a new lightweight water-surface object-detection model named LWS-YOLOv7, which is based on the baseline model YOLOv7. Firstly, the localization loss function is improved and the w-CIoU function is introduced to reduce the model’s sensitivity to position deviations of small objects and to improve the allocation accuracy of positive and negative sample labels. Secondly, a new receptive field amplification module named GSPPCSPC is proposed to reduce the model’s parameters and enhance its receptive field. Thirdly, a small-object feature-fusion layer, P2, is added to improve the recall rate of small objects. Finally, based on the LAMP model pruning method, the weights with lower importance are pruned to simplify the parameters and computational complexity of the model, facilitating the deployment of the model on shipborne devices. The experimental results demonstrate that, compared to the original YOLOv7 model, the map of LWS-YOLOv7 increased by 3.1%, the parameters decreased by 38.8%, and the GFLOPS decreased by 28.8%. Moreover, the model not only has better performance and higher speed for input images of different sizes, but it can also be applied to different meteorological conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助彭于晏采纳,获得10
刚刚
桐桐应助彭于晏采纳,获得10
1秒前
烟花应助彭于晏采纳,获得10
1秒前
烟花应助彭于晏采纳,获得10
1秒前
星辰大海应助彭于晏采纳,获得10
1秒前
蚂蚁Y嘿应助彭于晏采纳,获得10
1秒前
2秒前
peipeipei发布了新的文献求助10
2秒前
baolongzhan发布了新的文献求助10
2秒前
星海梦幻完成签到,获得积分10
3秒前
3秒前
lulu完成签到,获得积分10
4秒前
彭院士发布了新的文献求助10
4秒前
大头完成签到,获得积分20
4秒前
所所应助小王同学采纳,获得10
6秒前
7秒前
IBMffff发布了新的文献求助10
7秒前
长歌发布了新的文献求助10
8秒前
欣慰雪巧完成签到,获得积分10
8秒前
今后应助大头采纳,获得10
9秒前
9秒前
完美世界应助嘻嘻采纳,获得10
9秒前
bkagyin应助李洪伟采纳,获得10
11秒前
zhangjie3081完成签到,获得积分10
12秒前
闻诗歌关注了科研通微信公众号
13秒前
CipherSage应助仔wang采纳,获得10
13秒前
lion完成签到 ,获得积分10
13秒前
lwroche发布了新的文献求助10
14秒前
哈哈完成签到 ,获得积分10
15秒前
15秒前
不愧是我完成签到 ,获得积分10
15秒前
毛豆应助lulu采纳,获得10
16秒前
怡然乐巧完成签到,获得积分10
16秒前
不懂白完成签到 ,获得积分10
16秒前
充电宝应助安济采纳,获得10
16秒前
雨忠发布了新的文献求助10
17秒前
17秒前
笑点低的衬衫完成签到,获得积分10
17秒前
包容若风发布了新的文献求助10
19秒前
20秒前
高分求助中
Histotechnology: A Self-Instructional Text 5th Edition 2000
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3270111
求助须知:如何正确求助?哪些是违规求助? 2909739
关于积分的说明 8350306
捐赠科研通 2580102
什么是DOI,文献DOI怎么找? 1403143
科研通“疑难数据库(出版商)”最低求助积分说明 655653
邀请新用户注册赠送积分活动 635044