Automatic assessment of bowel preparation by an artificial intelligence model and its clinical applicability

医学 接收机工作特性 肠道准备 卡帕 横结肠 结肠镜检查 剪辑 科恩卡帕 人工智能 机器学习 外科 内科学 计算机科学 数学 结直肠癌 几何学 癌症
作者
Ji Young Lee,Jooyoung Park,Hyo‐Jeong Lee,Hana Park,Eun Hyo Jin,Kanggil Park,Ji Eun Baek,Dong‐Hoon Yang,Seung Wook Hong,Namkug Kim,Jeong‐Sik Byeon
出处
期刊:Journal of Gastroenterology and Hepatology [Wiley]
卷期号:39 (9): 1917-1923
标识
DOI:10.1111/jgh.16618
摘要

Abstract Background and Aim Reliable bowel preparation assessment is important in colonoscopy. However, current scoring systems are limited by laborious and time‐consuming tasks and interobserver variability. We aimed to develop an artificial intelligence (AI) model to assess bowel cleanliness and evaluate its clinical applicability. Methods A still image‐driven AI model to assess the Boston Bowel Preparation Scale (BBPS) was developed and validated using 2361 colonoscopy images. For evaluating real‐world applicability, the model was validated using 113 10‐s colonoscopy video clips and 30 full colonoscopy videos to identify “adequate (BBPS 2–3)” or “inadequate (BBPS 0–1)” preparation. The model was tested with an external dataset of 29 colonoscopy videos. The clinical applicability of the model was evaluated using 225 consecutive colonoscopies. Inter‐rater variability was analyzed between the AI model and endoscopists. Results The AI model achieved an accuracy of 94.0% and an area under the receiver operating characteristic curve of 0.939 with the still images. Model testing with an external dataset showed an accuracy of 95.3%, an area under the receiver operating characteristic curve of 0.976, and a sensitivity of 100% for the detection of inadequate preparations. The clinical applicability study showed an overall agreement rate of 85.3% between endoscopists and the AI model, with Fleiss' kappa of 0.686. The agreement rate was lower for the right colon compared with the transverse and left colon, with Fleiss' kappa of 0.563, 0.575, and 0.789, respectively. Conclusions The AI model demonstrated accurate bowel preparation assessment and substantial agreement with endoscopists. Further refinement of the AI model is warranted for effective monitoring of qualified colonoscopy in large‐scale screening programs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
周老八完成签到,获得积分10
1秒前
3秒前
万安安发布了新的文献求助10
4秒前
KEQIN应助一三二五七采纳,获得10
4秒前
赘婿应助研友_俞鸿煊采纳,获得10
5秒前
小新发布了新的文献求助10
6秒前
7秒前
yuhui完成签到,获得积分10
7秒前
7秒前
白石杏完成签到,获得积分10
7秒前
7秒前
menxiaomei发布了新的文献求助10
8秒前
领导范儿应助灵巧的以亦采纳,获得10
8秒前
8秒前
瓜瓜发布了新的文献求助10
11秒前
Yolo发布了新的文献求助10
12秒前
14秒前
15秒前
15秒前
慕青应助qmx采纳,获得10
17秒前
18秒前
18秒前
bkagyin应助故意的访云采纳,获得10
18秒前
难过新柔完成签到,获得积分10
19秒前
21秒前
glassman完成签到,获得积分10
22秒前
23秒前
洛洛发布了新的文献求助10
24秒前
默默白开水完成签到 ,获得积分10
25秒前
天意如此应助q792309106采纳,获得10
25秒前
Owen应助稗子酿的酒采纳,获得10
26秒前
qmx发布了新的文献求助10
28秒前
31秒前
洛洛完成签到,获得积分10
33秒前
34秒前
曾经的鸵鸟完成签到 ,获得积分10
35秒前
JamesPei应助喀迈拉采纳,获得10
37秒前
Peggy发布了新的文献求助10
37秒前
zhaoyichun发布了新的文献求助10
40秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993903
求助须知:如何正确求助?哪些是违规求助? 3534470
关于积分的说明 11265717
捐赠科研通 3274344
什么是DOI,文献DOI怎么找? 1806358
邀请新用户注册赠送积分活动 883170
科研通“疑难数据库(出版商)”最低求助积分说明 809712