Automatic assessment of bowel preparation by an artificial intelligence model and its clinical applicability

医学 接收机工作特性 肠道准备 卡帕 横结肠 结肠镜检查 剪辑 科恩卡帕 人工智能 机器学习 外科 内科学 计算机科学 数学 结直肠癌 几何学 癌症
作者
Ji Young Lee,Jooyoung Park,Hyo‐Jeong Lee,Hana Park,Eun Hyo Jin,Kanggil Park,Ji Eun Baek,Dong‐Hoon Yang,Seung Wook Hong,Namkug Kim,Jeong‐Sik Byeon
出处
期刊:Journal of Gastroenterology and Hepatology [Wiley]
卷期号:39 (9): 1917-1923
标识
DOI:10.1111/jgh.16618
摘要

Abstract Background and Aim Reliable bowel preparation assessment is important in colonoscopy. However, current scoring systems are limited by laborious and time‐consuming tasks and interobserver variability. We aimed to develop an artificial intelligence (AI) model to assess bowel cleanliness and evaluate its clinical applicability. Methods A still image‐driven AI model to assess the Boston Bowel Preparation Scale (BBPS) was developed and validated using 2361 colonoscopy images. For evaluating real‐world applicability, the model was validated using 113 10‐s colonoscopy video clips and 30 full colonoscopy videos to identify “adequate (BBPS 2–3)” or “inadequate (BBPS 0–1)” preparation. The model was tested with an external dataset of 29 colonoscopy videos. The clinical applicability of the model was evaluated using 225 consecutive colonoscopies. Inter‐rater variability was analyzed between the AI model and endoscopists. Results The AI model achieved an accuracy of 94.0% and an area under the receiver operating characteristic curve of 0.939 with the still images. Model testing with an external dataset showed an accuracy of 95.3%, an area under the receiver operating characteristic curve of 0.976, and a sensitivity of 100% for the detection of inadequate preparations. The clinical applicability study showed an overall agreement rate of 85.3% between endoscopists and the AI model, with Fleiss' kappa of 0.686. The agreement rate was lower for the right colon compared with the transverse and left colon, with Fleiss' kappa of 0.563, 0.575, and 0.789, respectively. Conclusions The AI model demonstrated accurate bowel preparation assessment and substantial agreement with endoscopists. Further refinement of the AI model is warranted for effective monitoring of qualified colonoscopy in large‐scale screening programs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助Tondu采纳,获得30
2秒前
2秒前
李小宁发布了新的文献求助10
2秒前
雷寒云发布了新的文献求助10
2秒前
000发布了新的文献求助10
3秒前
心想事陈同学完成签到,获得积分10
4秒前
4秒前
7秒前
8秒前
烤肠发布了新的文献求助10
9秒前
zydxyx完成签到,获得积分10
9秒前
123关闭了123文献求助
10秒前
10秒前
寻道图强应助Xin采纳,获得30
10秒前
李大柱完成签到,获得积分10
11秒前
科研通AI2S应助烤肠采纳,获得10
12秒前
JamesPei应助烤肠采纳,获得10
12秒前
13秒前
15秒前
标致溪流发布了新的文献求助10
18秒前
19秒前
20秒前
香蕉觅云应助lobster采纳,获得10
21秒前
科研通AI2S应助小志采纳,获得10
22秒前
JXC完成签到,获得积分10
22秒前
若离完成签到,获得积分10
23秒前
volvoamg发布了新的文献求助10
24秒前
24秒前
24秒前
25秒前
胥风完成签到,获得积分10
25秒前
月落杉松晚完成签到,获得积分10
25秒前
科研通AI2S应助大胖采纳,获得10
26秒前
26秒前
26秒前
正在发布了新的文献求助10
28秒前
兜兜完成签到 ,获得积分10
28秒前
爆米花应助自然的南露采纳,获得10
29秒前
若离发布了新的文献求助10
30秒前
30秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161361
求助须知:如何正确求助?哪些是违规求助? 2812759
关于积分的说明 7896737
捐赠科研通 2471652
什么是DOI,文献DOI怎么找? 1316074
科研通“疑难数据库(出版商)”最低求助积分说明 631122
版权声明 602112