Domains in a crystal, which have crystallographic uniformity and are geometrically segmented, typically arise from various phase transitions. The physical properties within individual domains are inherently the same as those in the homogeneous bulk. As a result, sufficiently large domains have little influence on the bulk properties. However, as the domains decrease in size to the nanoscale, for instance, due to multiple phase instabilities or spatial inhomogeneities, then the materials often acquire exceptional functionalities that are unattainable without these domains. This effect is exemplified by the ultrahigh dielectric and piezoelectric responses observed in ferroelectric oxides with nanoscale polar domains as well as in ferroelectric relaxors with polar nanoclusters. Here, we demonstrate that hashed nanoscale domains in an antiferroelectric material are also capable of boosting dielectric permittivity in an unconventional way. This discovery has been made in an antiferroelectric titanite-type oxide, CaTi(Si