Integration of Image and Sensor Data for Improved Disease Detection in Peach Trees Using Deep Learning Techniques

人工智能 深度学习 计算机科学 遥感 模式识别(心理学) 计算机视觉 地理
作者
Kuiheng Chen,Jingjing Lang,Jiayun Li,Du Chen,Xuaner Wang,Junyu Zhou,Xuan Liu,Yihong Song,Min Dong
出处
期刊:Agriculture [Multidisciplinary Digital Publishing Institute]
卷期号:14 (6): 797-797 被引量:1
标识
DOI:10.3390/agriculture14060797
摘要

An innovative framework for peach tree disease recognition and segmentation is proposed in this paper, with the aim of significantly enhancing model performance in complex agricultural settings through deep learning techniques and data fusion strategies. The core innovations include a tiny feature attention mechanism backbone network, an aligned-head module, a Transformer-based semantic segmentation network, and a specially designed alignment loss function. The integration of these technologies not only optimizes the model’s ability to capture subtle disease features but also improves the efficiency of integrating sensor and image data, further enhancing the accuracy of the segmentation tasks. Experimental results demonstrate the superiority of this framework. For disease detection, the proposed method achieved a precision of 94%, a recall of 92%, and an accuracy of 92%, surpassing classical models like AlexNet, GoogLeNet, VGGNet, ResNet, and EfficientNet. In lesion segmentation tasks, the proposed method achieved a precision of 95%, a recall of 90%, and an mIoU of 94%, significantly outperforming models such as SegNet, UNet, and UNet++. The introduction of the aligned-head module and alignment loss function provides an effective solution for processing images lacking sensor data, significantly enhancing the model’s capability to process real agricultural image data. Through detailed ablation experiments, the study further validates the critical role of the aligned-head module and alignment loss function in enhancing model performance, particularly in the attention-head ablation experiment where the aligned-head configuration surpassed other configurations across all metrics, highlighting its key role in the overall framework. These experiments not only showcase the theoretical effectiveness of the proposed method but also confirm its practical value in agricultural disease management practices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
黑尼格发布了新的文献求助10
刚刚
Gotyababy发布了新的文献求助10
刚刚
科研通AI2S应助徐昊雯采纳,获得10
1秒前
上官若男应助健康的雪萍采纳,获得10
1秒前
1秒前
1秒前
长颈鹿没有脖子完成签到 ,获得积分10
2秒前
昵称呢完成签到,获得积分10
3秒前
科研通AI5应助syk采纳,获得10
3秒前
贝贝完成签到,获得积分10
4秒前
5秒前
wanghao婷完成签到,获得积分20
5秒前
无限松发布了新的文献求助10
5秒前
5秒前
ekswai发布了新的文献求助10
5秒前
Eleven888关注了科研通微信公众号
6秒前
6秒前
林机一动完成签到,获得积分10
6秒前
11完成签到,获得积分10
6秒前
7秒前
小v1212完成签到,获得积分20
7秒前
lemon发布了新的文献求助10
8秒前
zzzxx完成签到,获得积分10
9秒前
如来发布了新的文献求助20
9秒前
lgq12697应助萤火虫采纳,获得10
9秒前
9秒前
岩岩岩完成签到,获得积分10
9秒前
科研通AI6应助Matthew_G采纳,获得10
10秒前
Hhd完成签到,获得积分10
10秒前
银匠完成签到,获得积分10
10秒前
什么完成签到,获得积分10
10秒前
CodeCraft应助NEO采纳,获得10
11秒前
11发布了新的文献求助10
11秒前
beyondjun发布了新的文献求助10
11秒前
科研小白发布了新的文献求助10
12秒前
YA关注了科研通微信公众号
12秒前
panda_elvis发布了新的文献求助10
12秒前
12秒前
13秒前
香蕉觅云应助dg_fisher采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Guidelines for Characterization of Gas Turbine Engine Total-Pressure, Planar-Wave, and Total-Temperature Inlet-Flow Distortion 300
Stackable Smart Footwear Rack Using Infrared Sensor 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4604100
求助须知:如何正确求助?哪些是违规求助? 4012619
关于积分的说明 12424227
捐赠科研通 3693241
什么是DOI,文献DOI怎么找? 2036105
邀请新用户注册赠送积分活动 1069230
科研通“疑难数据库(出版商)”最低求助积分说明 953709