Integration of Image and Sensor Data for Improved Disease Detection in Peach Trees Using Deep Learning Techniques

人工智能 深度学习 计算机科学 遥感 模式识别(心理学) 计算机视觉 地理
作者
Kuiheng Chen,Jingjing Lang,Jiayun Li,Du Chen,Xuaner Wang,Junyu Zhou,Xuan Liu,Yihong Song,Min Dong
出处
期刊:Agriculture [Multidisciplinary Digital Publishing Institute]
卷期号:14 (6): 797-797 被引量:1
标识
DOI:10.3390/agriculture14060797
摘要

An innovative framework for peach tree disease recognition and segmentation is proposed in this paper, with the aim of significantly enhancing model performance in complex agricultural settings through deep learning techniques and data fusion strategies. The core innovations include a tiny feature attention mechanism backbone network, an aligned-head module, a Transformer-based semantic segmentation network, and a specially designed alignment loss function. The integration of these technologies not only optimizes the model’s ability to capture subtle disease features but also improves the efficiency of integrating sensor and image data, further enhancing the accuracy of the segmentation tasks. Experimental results demonstrate the superiority of this framework. For disease detection, the proposed method achieved a precision of 94%, a recall of 92%, and an accuracy of 92%, surpassing classical models like AlexNet, GoogLeNet, VGGNet, ResNet, and EfficientNet. In lesion segmentation tasks, the proposed method achieved a precision of 95%, a recall of 90%, and an mIoU of 94%, significantly outperforming models such as SegNet, UNet, and UNet++. The introduction of the aligned-head module and alignment loss function provides an effective solution for processing images lacking sensor data, significantly enhancing the model’s capability to process real agricultural image data. Through detailed ablation experiments, the study further validates the critical role of the aligned-head module and alignment loss function in enhancing model performance, particularly in the attention-head ablation experiment where the aligned-head configuration surpassed other configurations across all metrics, highlighting its key role in the overall framework. These experiments not only showcase the theoretical effectiveness of the proposed method but also confirm its practical value in agricultural disease management practices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tudousi完成签到 ,获得积分10
1秒前
共享精神应助快乐仙知采纳,获得10
4秒前
7秒前
王子安举报duanduan求助涉嫌违规
8秒前
9秒前
王子安应助JaneChen采纳,获得10
10秒前
10秒前
klicking发布了新的文献求助100
12秒前
jodie0105发布了新的文献求助10
14秒前
李爱国应助定烜采纳,获得10
15秒前
今今发布了新的文献求助10
15秒前
快乐仙知发布了新的文献求助10
16秒前
老金金完成签到 ,获得积分10
16秒前
汉堡包应助da1234采纳,获得10
17秒前
阳佟水蓉完成签到,获得积分10
18秒前
19秒前
March应助balko采纳,获得10
21秒前
善学以致用应助陈敏采纳,获得10
22秒前
核桃应助不忘初心采纳,获得10
24秒前
量子星尘发布了新的文献求助10
25秒前
26秒前
28秒前
zsy发布了新的文献求助10
29秒前
这个夏天完成签到,获得积分10
31秒前
35秒前
科研通AI5应助哈哈哈采纳,获得10
36秒前
眷顾完成签到,获得积分10
37秒前
空曲完成签到 ,获得积分10
37秒前
38秒前
38秒前
亚琳完成签到,获得积分10
39秒前
ankey完成签到,获得积分10
41秒前
小天狼星发布了新的文献求助10
43秒前
44秒前
hh发布了新的文献求助10
44秒前
45秒前
45秒前
SHAO应助agoni采纳,获得10
46秒前
46秒前
英勇的寒蕾完成签到,获得积分10
46秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979648
求助须知:如何正确求助?哪些是违规求助? 3523618
关于积分的说明 11218147
捐赠科研通 3261119
什么是DOI,文献DOI怎么找? 1800416
邀请新用户注册赠送积分活动 879099
科研通“疑难数据库(出版商)”最低求助积分说明 807167