Integration of Image and Sensor Data for Improved Disease Detection in Peach Trees Using Deep Learning Techniques

人工智能 深度学习 计算机科学 遥感 模式识别(心理学) 计算机视觉 地理
作者
Kuiheng Chen,Jingjing Lang,Jiayun Li,Du Chen,Xuaner Wang,Junyu Zhou,Xuan Liu,Yihong Song,Min Dong
出处
期刊:Agriculture [MDPI AG]
卷期号:14 (6): 797-797 被引量:1
标识
DOI:10.3390/agriculture14060797
摘要

An innovative framework for peach tree disease recognition and segmentation is proposed in this paper, with the aim of significantly enhancing model performance in complex agricultural settings through deep learning techniques and data fusion strategies. The core innovations include a tiny feature attention mechanism backbone network, an aligned-head module, a Transformer-based semantic segmentation network, and a specially designed alignment loss function. The integration of these technologies not only optimizes the model’s ability to capture subtle disease features but also improves the efficiency of integrating sensor and image data, further enhancing the accuracy of the segmentation tasks. Experimental results demonstrate the superiority of this framework. For disease detection, the proposed method achieved a precision of 94%, a recall of 92%, and an accuracy of 92%, surpassing classical models like AlexNet, GoogLeNet, VGGNet, ResNet, and EfficientNet. In lesion segmentation tasks, the proposed method achieved a precision of 95%, a recall of 90%, and an mIoU of 94%, significantly outperforming models such as SegNet, UNet, and UNet++. The introduction of the aligned-head module and alignment loss function provides an effective solution for processing images lacking sensor data, significantly enhancing the model’s capability to process real agricultural image data. Through detailed ablation experiments, the study further validates the critical role of the aligned-head module and alignment loss function in enhancing model performance, particularly in the attention-head ablation experiment where the aligned-head configuration surpassed other configurations across all metrics, highlighting its key role in the overall framework. These experiments not only showcase the theoretical effectiveness of the proposed method but also confirm its practical value in agricultural disease management practices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
ZHAO发布了新的文献求助10
2秒前
司南应助Phi.Wang采纳,获得10
2秒前
GGBOND2024发布了新的文献求助10
3秒前
善良紫安发布了新的文献求助10
3秒前
CipherSage应助年轻绮露采纳,获得10
3秒前
刘叶发布了新的文献求助10
4秒前
4秒前
嘀嘀咕咕完成签到,获得积分10
4秒前
5秒前
飞哥发布了新的文献求助10
5秒前
酷波er应助孙伟健采纳,获得10
5秒前
薰硝壤应助小于采纳,获得20
6秒前
SciGPT应助菠萝炒饭采纳,获得10
6秒前
7秒前
加菲丰丰应助阿湫采纳,获得20
7秒前
可爱的函函应助yuwan采纳,获得10
7秒前
Hello应助魁梧的小霸王采纳,获得10
7秒前
7秒前
优美匕完成签到,获得积分10
7秒前
gssw1完成签到,获得积分20
8秒前
独立江湖女完成签到 ,获得积分10
8秒前
9秒前
情怀应助聂学雨采纳,获得10
9秒前
9秒前
xth完成签到 ,获得积分10
10秒前
猛犸象应助gwq采纳,获得10
10秒前
罗同学完成签到,获得积分10
11秒前
CWNU_HAN应助吴明涛采纳,获得30
12秒前
12秒前
baoziya发布了新的文献求助20
13秒前
13秒前
14秒前
14秒前
汉堡包应助princyy49采纳,获得10
15秒前
葭月十七发布了新的文献求助10
15秒前
搜集达人应助一个小胖子采纳,获得10
16秒前
16秒前
16秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135885
求助须知:如何正确求助?哪些是违规求助? 2786652
关于积分的说明 7778992
捐赠科研通 2442900
什么是DOI,文献DOI怎么找? 1298731
科研通“疑难数据库(出版商)”最低求助积分说明 625219
版权声明 600870