亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Integration of Image and Sensor Data for Improved Disease Detection in Peach Trees Using Deep Learning Techniques

人工智能 深度学习 计算机科学 遥感 模式识别(心理学) 计算机视觉 地理
作者
Kuiheng Chen,Jingjing Lang,Jiayun Li,Du Chen,Xuaner Wang,Junyu Zhou,Xuan Liu,Yihong Song,Min Dong
出处
期刊:Agriculture [MDPI AG]
卷期号:14 (6): 797-797 被引量:1
标识
DOI:10.3390/agriculture14060797
摘要

An innovative framework for peach tree disease recognition and segmentation is proposed in this paper, with the aim of significantly enhancing model performance in complex agricultural settings through deep learning techniques and data fusion strategies. The core innovations include a tiny feature attention mechanism backbone network, an aligned-head module, a Transformer-based semantic segmentation network, and a specially designed alignment loss function. The integration of these technologies not only optimizes the model’s ability to capture subtle disease features but also improves the efficiency of integrating sensor and image data, further enhancing the accuracy of the segmentation tasks. Experimental results demonstrate the superiority of this framework. For disease detection, the proposed method achieved a precision of 94%, a recall of 92%, and an accuracy of 92%, surpassing classical models like AlexNet, GoogLeNet, VGGNet, ResNet, and EfficientNet. In lesion segmentation tasks, the proposed method achieved a precision of 95%, a recall of 90%, and an mIoU of 94%, significantly outperforming models such as SegNet, UNet, and UNet++. The introduction of the aligned-head module and alignment loss function provides an effective solution for processing images lacking sensor data, significantly enhancing the model’s capability to process real agricultural image data. Through detailed ablation experiments, the study further validates the critical role of the aligned-head module and alignment loss function in enhancing model performance, particularly in the attention-head ablation experiment where the aligned-head configuration surpassed other configurations across all metrics, highlighting its key role in the overall framework. These experiments not only showcase the theoretical effectiveness of the proposed method but also confirm its practical value in agricultural disease management practices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
小山己几完成签到,获得积分10
7秒前
眯眯眼的山柳完成签到,获得积分10
9秒前
13秒前
17秒前
1577发布了新的文献求助10
20秒前
兴奋秋珊完成签到 ,获得积分10
24秒前
27秒前
Zert发布了新的文献求助10
33秒前
bkagyin应助xuan采纳,获得10
56秒前
1分钟前
xuan发布了新的文献求助10
1分钟前
nbtzy完成签到,获得积分10
1分钟前
1分钟前
兴奋秋珊发布了新的文献求助10
1分钟前
1分钟前
兴奋秋珊发布了新的文献求助10
1分钟前
1分钟前
1分钟前
醉熏的灵安完成签到 ,获得积分10
1分钟前
兴奋秋珊发布了新的文献求助10
1分钟前
W陈发布了新的文献求助20
1分钟前
1分钟前
兴奋秋珊发布了新的文献求助10
1分钟前
2分钟前
科研通AI2S应助Marciu33采纳,获得10
2分钟前
兴奋秋珊发布了新的文献求助10
2分钟前
2分钟前
小马甲应助xuan采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
兴奋秋珊发布了新的文献求助10
2分钟前
2分钟前
xuan完成签到,获得积分10
2分钟前
Jarvis发布了新的文献求助10
2分钟前
xuan发布了新的文献求助10
2分钟前
2分钟前
2分钟前
兴奋秋珊发布了新的文献求助10
3分钟前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Holistic Discourse Analysis 600
Constitutional and Administrative Law 600
Vertebrate Palaeontology, 5th Edition 530
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5346219
求助须知:如何正确求助?哪些是违规求助? 4480951
关于积分的说明 13947038
捐赠科研通 4378626
什么是DOI,文献DOI怎么找? 2405984
邀请新用户注册赠送积分活动 1398546
关于科研通互助平台的介绍 1371163