钝化
钙钛矿(结构)
硅烷
结晶度
带隙
材料科学
光电子学
能量转换效率
量子产额
光致发光
光化学
化学
纳米技术
光学
物理
结晶学
图层(电子)
复合材料
荧光
作者
Yen‐Hung Lin,Vikram Vikram,Fengning Yang,X. K. Cao,Akash Dasgupta,Robert D. J. Oliver,Aleksander M. Ulatowski,M. McCarthy,Xinyi Shen,Qimu Yuan,M. Greyson Christoforo,Fion Sze Yan Yeung,Michael B. Johnston,Nakita K. Noel,Laura M. Herz,M. Saïful Islam,Henry J. Snaith
出处
期刊:Science
[American Association for the Advancement of Science (AAAS)]
日期:2024-05-16
卷期号:384 (6697): 767-775
被引量:7
标识
DOI:10.1126/science.ado2302
摘要
The efficiency and longevity of metal-halide perovskite solar cells are typically dictated by nonradiative defect-mediated charge recombination. In this work, we demonstrate a vapor-based amino-silane passivation that reduces photovoltage deficits to around 100 millivolts (>90% of the thermodynamic limit) in perovskite solar cells of bandgaps between 1.6 and 1.8 electron volts, which is crucial for tandem applications. A primary-, secondary-, or tertiary-amino–silane alone negatively or barely affected perovskite crystallinity and charge transport, but amino-silanes that incorporate primary and secondary amines yield up to a 60-fold increase in photoluminescence quantum yield and preserve long-range conduction. Amino-silane–treated devices retained 95% power conversion efficiency for more than 1500 hours under full-spectrum sunlight at 85°C and open-circuit conditions in ambient air with a relative humidity of 50 to 60%.
科研通智能强力驱动
Strongly Powered by AbleSci AI