亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Collaborative compensative transformer network for salient object detection

变压器 突出 计算机科学 人工智能 计算机视觉 模式识别(心理学) 工程类 电气工程 电压
作者
Jun Chen,Heye Zhang,Mingming Gong,Zhifan Gao
出处
期刊:Pattern Recognition [Elsevier]
卷期号:154: 110600-110600 被引量:1
标识
DOI:10.1016/j.patcog.2024.110600
摘要

Salient object detection (SOD) is of high significance for various computer vision applications but is a challenging task due to the complicated scenes in real-world images. Most state-of-the-art SOD methods aim to build long-range dependency for improving global contrast modeling in complicated scenes. However, most of them suffer from the prior assumption of treating image patches as visual tokens for building long-range dependency. This is because this assumption leads to localizing salient regions with uncertain boundaries due to the lost object structure information. In this paper, to address this issue, we re-construct the prior assumption of treating both patches and superpixels as visual tokens for building long-range dependency, which takes into account the properties of superpixels and patches in preserving detailed structural-aware information and local context information, respectively. Based on the re-constructed prior assumption, we propose a Collaborative Compensative Transformer Network (CCTNet) for the SOD task. CCTNet firstly alternates the computation within the same kind of vision tokens and among different vision tokens to build their dependencies. By this means, the relationship between multi-level global context and detailed structure representation can be explicitly modeled for consistent semantic and object structure understanding. Then, CCTNet performs feature joint decoding for SOD by fusing the complementary global context and detailed structure for locating objects with certain boundaries. Extensive experiments were conducted to validate the effectiveness of the proposed modules. Furthermore, the experiments on ten benchmark datasets demonstrated the state-of-the-art performance of CCTNet on both RGB and RGB-D SOD.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sagapo完成签到 ,获得积分10
4秒前
寻道图强应助科研通管家采纳,获得40
6秒前
jingjing完成签到 ,获得积分10
12秒前
14秒前
白小余发布了新的文献求助10
20秒前
简单的尔风完成签到 ,获得积分10
37秒前
ding应助开心努力毕业版采纳,获得10
37秒前
45秒前
科研通AI2S应助安静鸽哥采纳,获得10
45秒前
49秒前
50秒前
53秒前
布通发布了新的文献求助30
55秒前
陶兜兜完成签到,获得积分10
1分钟前
安静的磬发布了新的文献求助10
1分钟前
科研通AI2S应助安静的磬采纳,获得10
1分钟前
科研通AI2S应助陶兜兜采纳,获得10
1分钟前
苗条青槐完成签到 ,获得积分10
1分钟前
支觅露完成签到 ,获得积分10
1分钟前
CipherSage应助蝈蝈采纳,获得30
1分钟前
ooooyasumi完成签到,获得积分10
1分钟前
1分钟前
2分钟前
NexusExplorer应助吵吵robot采纳,获得10
2分钟前
2分钟前
姚老表完成签到,获得积分10
2分钟前
2分钟前
LU完成签到 ,获得积分10
2分钟前
3分钟前
3分钟前
bkagyin应助KSung采纳,获得10
3分钟前
体贴问丝完成签到 ,获得积分10
3分钟前
3分钟前
KSung发布了新的文献求助10
3分钟前
桃园奈奈露完成签到,获得积分10
3分钟前
深情安青应助科研通管家采纳,获得10
4分钟前
隐形曼青应助科研通管家采纳,获得10
4分钟前
Jasper应助科研通管家采纳,获得10
4分钟前
英勇背包完成签到,获得积分10
4分钟前
无名完成签到,获得积分10
4分钟前
高分求助中
Sustainability in Tides Chemistry 1500
Handbook of the Mammals of the World – Volume 3: Primates 805
拟南芥模式识别受体参与调控抗病蛋白介导的ETI免疫反应的机制研究 550
Gerard de Lairesse : an artist between stage and studio 500
Digging and Dealing in Eighteenth-Century Rome 500
Queer Politics in Times of New Authoritarianisms: Popular Culture in South Asia 500
Manual of Sewer Condition Classification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3068019
求助须知:如何正确求助?哪些是违规求助? 2722010
关于积分的说明 7475912
捐赠科研通 2369097
什么是DOI,文献DOI怎么找? 1256116
科研通“疑难数据库(出版商)”最低求助积分说明 609454
版权声明 596795