Collaborative compensative transformer network for salient object detection

突出 计算机科学 人工智能 目标检测 计算机视觉 水准点(测量) 特征(语言学) 背景(考古学) 上下文模型 对象(语法) 模式识别(心理学) 哲学 古生物学 生物 地理 语言学 大地测量学
作者
Jun Chen,Heye Zhang,Mingming Gong,Zhifan Gao
出处
期刊:Pattern Recognition [Elsevier]
卷期号:154: 110600-110600 被引量:5
标识
DOI:10.1016/j.patcog.2024.110600
摘要

Salient object detection (SOD) is of high significance for various computer vision applications but is a challenging task due to the complicated scenes in real-world images. Most state-of-the-art SOD methods aim to build long-range dependency for improving global contrast modeling in complicated scenes. However, most of them suffer from the prior assumption of treating image patches as visual tokens for building long-range dependency. This is because this assumption leads to localizing salient regions with uncertain boundaries due to the lost object structure information. In this paper, to address this issue, we re-construct the prior assumption of treating both patches and superpixels as visual tokens for building long-range dependency, which takes into account the properties of superpixels and patches in preserving detailed structural-aware information and local context information, respectively. Based on the re-constructed prior assumption, we propose a Collaborative Compensative Transformer Network (CCTNet) for the SOD task. CCTNet firstly alternates the computation within the same kind of vision tokens and among different vision tokens to build their dependencies. By this means, the relationship between multi-level global context and detailed structure representation can be explicitly modeled for consistent semantic and object structure understanding. Then, CCTNet performs feature joint decoding for SOD by fusing the complementary global context and detailed structure for locating objects with certain boundaries. Extensive experiments were conducted to validate the effectiveness of the proposed modules. Furthermore, the experiments on ten benchmark datasets demonstrated the state-of-the-art performance of CCTNet on both RGB and RGB-D SOD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
榴莲完成签到,获得积分10
刚刚
对照完成签到 ,获得积分10
刚刚
1秒前
1秒前
初闻完成签到,获得积分10
2秒前
惠惠发布了新的文献求助10
2秒前
慕青应助a1oft采纳,获得10
3秒前
叶十七完成签到,获得积分10
3秒前
汉堡包应助宇_采纳,获得10
3秒前
SciGPT应助H71000A采纳,获得10
3秒前
侦察兵发布了新的文献求助10
4秒前
自然乐松关注了科研通微信公众号
4秒前
zqfxc完成签到,获得积分10
4秒前
sumeiling完成签到,获得积分20
4秒前
朴素的鸡完成签到,获得积分20
5秒前
大七发布了新的文献求助10
5秒前
zzzq完成签到,获得积分10
5秒前
5秒前
5秒前
6秒前
6秒前
6秒前
请叫我风吹麦浪应助卡卡采纳,获得10
6秒前
传奇3应助起司嗯采纳,获得10
7秒前
remimazolam发布了新的文献求助10
8秒前
在水一方应助悦耳寒松采纳,获得10
8秒前
满座完成签到,获得积分10
8秒前
科研通AI2S应助coffee采纳,获得10
8秒前
9秒前
雪山飞龙发布了新的文献求助30
9秒前
科研通AI5应助phd采纳,获得10
10秒前
善学以致用应助京阿尼采纳,获得10
10秒前
Sylvia完成签到,获得积分10
10秒前
朴素的鸡发布了新的文献求助10
10秒前
SCI发布了新的文献求助10
10秒前
凹凸曼打小傻蛋完成签到 ,获得积分10
11秒前
Enoch完成签到,获得积分10
11秒前
Sara完成签到,获得积分10
11秒前
11秒前
zhuzhu发布了新的文献求助20
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794