Collaborative compensative transformer network for salient object detection

突出 计算机科学 人工智能 目标检测 计算机视觉 水准点(测量) 特征(语言学) 背景(考古学) 上下文模型 对象(语法) 模式识别(心理学) 哲学 古生物学 生物 地理 语言学 大地测量学
作者
Jun Chen,Heye Zhang,Mingming Gong,Zhifan Gao
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:154: 110600-110600 被引量:5
标识
DOI:10.1016/j.patcog.2024.110600
摘要

Salient object detection (SOD) is of high significance for various computer vision applications but is a challenging task due to the complicated scenes in real-world images. Most state-of-the-art SOD methods aim to build long-range dependency for improving global contrast modeling in complicated scenes. However, most of them suffer from the prior assumption of treating image patches as visual tokens for building long-range dependency. This is because this assumption leads to localizing salient regions with uncertain boundaries due to the lost object structure information. In this paper, to address this issue, we re-construct the prior assumption of treating both patches and superpixels as visual tokens for building long-range dependency, which takes into account the properties of superpixels and patches in preserving detailed structural-aware information and local context information, respectively. Based on the re-constructed prior assumption, we propose a Collaborative Compensative Transformer Network (CCTNet) for the SOD task. CCTNet firstly alternates the computation within the same kind of vision tokens and among different vision tokens to build their dependencies. By this means, the relationship between multi-level global context and detailed structure representation can be explicitly modeled for consistent semantic and object structure understanding. Then, CCTNet performs feature joint decoding for SOD by fusing the complementary global context and detailed structure for locating objects with certain boundaries. Extensive experiments were conducted to validate the effectiveness of the proposed modules. Furthermore, the experiments on ten benchmark datasets demonstrated the state-of-the-art performance of CCTNet on both RGB and RGB-D SOD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
牛牛牛发布了新的文献求助10
刚刚
1秒前
核桃发布了新的文献求助10
1秒前
薇子发布了新的文献求助10
2秒前
领导范儿应助小明仔采纳,获得10
2秒前
科研鸟发布了新的文献求助10
3秒前
xsz关注了科研通微信公众号
4秒前
DK完成签到,获得积分10
5秒前
燕子发布了新的文献求助30
8秒前
TTT完成签到,获得积分10
9秒前
FashionBoy应助Dora采纳,获得10
9秒前
9秒前
9秒前
11秒前
英雷完成签到,获得积分10
12秒前
深情安青应助小智采纳,获得10
14秒前
个性的汲发布了新的文献求助10
14秒前
WANG发布了新的文献求助10
15秒前
小马甲应助科研通管家采纳,获得10
18秒前
赘婿应助科研通管家采纳,获得10
18秒前
传奇3应助科研通管家采纳,获得30
18秒前
yznfly应助科研通管家采纳,获得30
18秒前
18秒前
知许解夏应助科研通管家采纳,获得10
19秒前
Orange应助科研通管家采纳,获得10
19秒前
斯文败类应助科研通管家采纳,获得10
19秒前
Hello应助科研通管家采纳,获得10
19秒前
科目三应助科研通管家采纳,获得10
19秒前
华仔应助科研通管家采纳,获得30
19秒前
1111应助科研通管家采纳,获得10
19秒前
彭于晏应助科研通管家采纳,获得10
19秒前
小二郎应助科研通管家采纳,获得10
19秒前
SYLH应助科研通管家采纳,获得10
19秒前
yydragen应助科研通管家采纳,获得30
19秒前
研友_VZG7GZ应助科研通管家采纳,获得10
19秒前
SYLH应助科研通管家采纳,获得10
19秒前
SYLH应助科研通管家采纳,获得10
19秒前
Akim应助科研通管家采纳,获得10
19秒前
19秒前
wanci应助科研通管家采纳,获得10
19秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966430
求助须知:如何正确求助?哪些是违规求助? 3511854
关于积分的说明 11160310
捐赠科研通 3246555
什么是DOI,文献DOI怎么找? 1793425
邀请新用户注册赠送积分活动 874438
科研通“疑难数据库(出版商)”最低求助积分说明 804388