Determining whether an ectopic depolarization will lead to a self-perpetuating arrhythmia is of critical importance in determining arrhythmia risk, so it is necessary to understand what factors impact substrate vulnerability. This study sought to explore the impact of cell-to-cell heterogeneity in ion channel conductance on substrate vulnerability to arrhythmia by measuring the duration of the vulnerable window in computational models of one-dimensional cables of ventricular cardiomyocytes. We began by using a population of uniform cable models to determine the mechanisms underlying the vulnerable window phenomenon. We found that in addition to the known importance of