A structure-switching electrochemical aptamer sensor for mercury ions based on an ordered assembled gold nanorods-modified electrode

适体 纳米棒 循环伏安法 电化学气体传感器 微分脉冲伏安法 介电谱 电化学 二茂铁 电极 化学 检出限 分析化学(期刊) 选择性 氧化还原 无机化学 材料科学 纳米技术 物理化学 色谱法 有机化学 遗传学 生物 催化作用
作者
Liying Jiang,Ninghao Liu,Dongyang Li,Pengbo Yin,Xinru Xu,Chuang Shang,Fenghua Chen,Xiaoyun Qin,Zhen Zhang
出处
期刊:Solid State Sciences [Elsevier]
卷期号:154: 107582-107582
标识
DOI:10.1016/j.solidstatesciences.2024.107582
摘要

In this paper, an electrochemical aptamer sensor with high sensitivity and selectivity was proposed for the detection of mercury ion (Hg2+). The orderly assembled gold nanorods-modified screen-printed electrode (AuNRs/SPE) was used to improve the sensor with higher sensitivity and data reproducibility. The sensor was designed based on the specific recognition of Hg2+ with aptamer to form T-Hg2+-T binding structure. Two aptamer chains were applied in the designed sensor, aptamer S1 with terminal thiolate group was self-assembled on the AuNRs/SPE via Au-S bond, and complementary S2 labeled with ferrocene (Fc) would generate a strong redox electrical signal. The addition of Hg2+ would mediate the folding of the T-base of S1 to form a hairpin structure, resulting in the dissociation of the Fc-labelled S2 from the sensing system and a significant reduction in the redox current. The electrochemical properties of the sensor were further investigated using cyclic voltammetry (CV), differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS). The effects of aptamer reaction time, concentration, and target incubation time on the sensor response were also investigated. The results showed that the sensor had a sensitive response to Hg2+ at concentrations ranging from 1 pM to 1 μM, with a detection limit of 0.3 pM. Furthermore, the proposed sensor was applied in the determination of Hg2+ in real samples, demonstrating its potential practical value.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
6秒前
可爱的函函应助WH采纳,获得10
6秒前
howl完成签到 ,获得积分20
7秒前
10秒前
Xudong发布了新的文献求助10
11秒前
12秒前
化学渣完成签到 ,获得积分20
12秒前
13秒前
09285号完成签到 ,获得积分10
14秒前
14秒前
董文同学完成签到 ,获得积分20
14秒前
从容成危完成签到 ,获得积分10
16秒前
18秒前
19秒前
噶了发布了新的文献求助10
19秒前
22秒前
24秒前
25秒前
WH发布了新的文献求助10
25秒前
Sky完成签到,获得积分10
25秒前
ygr应助XBL采纳,获得20
28秒前
Yzh完成签到,获得积分10
28秒前
janejane发布了新的文献求助10
28秒前
传奇3应助守护星星采纳,获得10
28秒前
淡然的元容完成签到,获得积分10
30秒前
31秒前
31秒前
33秒前
aniver完成签到 ,获得积分10
34秒前
35秒前
金皮卡发布了新的文献求助10
35秒前
36秒前
36秒前
grey发布了新的文献求助10
36秒前
韭菜完成签到,获得积分20
37秒前
叮当给宋十一的求助进行了留言
38秒前
盈月发布了新的文献求助10
38秒前
紫清完成签到,获得积分10
38秒前
wanci应助Xiaoming85采纳,获得30
39秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149289
求助须知:如何正确求助?哪些是违规求助? 2800391
关于积分的说明 7839862
捐赠科研通 2457980
什么是DOI,文献DOI怎么找? 1308158
科研通“疑难数据库(出版商)”最低求助积分说明 628456
版权声明 601706