[Artificial intelligence research advances in discrimination and diagnosis of pulmonary ground-glass nodules].

医学 放射科 人工智能 病理 计算机科学
作者
Y J Li,Yi Wang,Zhao Qiu
出处
期刊:PubMed 卷期号:47 (6): 566-570
标识
DOI:10.3760/cma.j.cn112147-20231214-00370
摘要

Lung cancer, which accounts for about 18% of all cancer-related deaths worldwide, has a dismal 5-year survival rate of less than 20%. Survival rates for early-stage lung cancers (stages IA1, IA2, IA3, and IB, according to the TNM staging system) are significantly higher, underscoring the critical importance of early detection, diagnosis, and treatment. Ground-glass nodules (GGNs), which are commonly seen on lung imaging, can be indicative of both benign and malignant lesions. For clinicians, accurately characterizing GGNs and choosing the right management strategies present significant challenges. Artificial intelligence (AI), specifically deep learning algorithms, has shown promise in the evaluation of GGNs by analyzing complex imaging data and predicting the nature of GGNs, including their benign or malignant status, pathological subtypes, and genetic mutations such as epidermal growth factor receptor (EGFR) mutations. By integrating imaging features and clinical data, AI models have demonstrated high accuracy in distinguishing between benign and malignant GGNs and in predicting specific pathological subtypes. In addition, AI has shown promise in predicting genetic mutations such as EGFR mutations, which are critical for personalized treatment decisions in lung cancer. While AI offers significant potential to improve the accuracy and efficiency of GGN assessment, challenges remain, such as the need for extensive validation studies, standardization of imaging protocols, and improving the interpretability of AI algorithms. In summary, AI has the potential to revolutionise the management of GGNs by providing clinicians with more accurate and timely information for diagnosis and treatment decisions. However, further research and validation are needed to fully realize the benefits of AI in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
是一只象完成签到,获得积分20
刚刚
科研通AI5应助海鸥海鸥采纳,获得10
1秒前
幸福遥完成签到,获得积分10
2秒前
2秒前
小王发布了新的文献求助10
2秒前
热心的代桃完成签到,获得积分10
2秒前
CodeCraft应助Olsters采纳,获得10
2秒前
3秒前
研友_IEEE快到碗里来完成签到,获得积分10
4秒前
哈哈大笑应助吴岳采纳,获得10
4秒前
4秒前
酷炫中蓝完成签到,获得积分10
4秒前
早川完成签到 ,获得积分10
5秒前
拼搏语薇完成签到,获得积分10
5秒前
科研通AI5应助SCI采纳,获得10
6秒前
dling02完成签到 ,获得积分10
6秒前
6秒前
是天使呢完成签到,获得积分10
6秒前
7秒前
7秒前
内向秋寒发布了新的文献求助10
7秒前
cc发布了新的文献求助10
7秒前
ding应助zhui采纳,获得10
8秒前
drwang120完成签到 ,获得积分10
8秒前
坨坨西州完成签到,获得积分10
9秒前
海绵体宝宝应助Louise采纳,获得20
9秒前
小马甲应助lichaoyes采纳,获得10
9秒前
9秒前
10秒前
10秒前
坨坨西州发布了新的文献求助10
11秒前
彬彬发布了新的文献求助10
11秒前
大模型应助Abao采纳,获得10
11秒前
sfw驳回了苏照杭应助
12秒前
dingdong发布了新的文献求助10
12秒前
别拖延了要毕业啊完成签到,获得积分10
13秒前
13秒前
13秒前
Rrr发布了新的文献求助10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794