[Artificial intelligence research advances in discrimination and diagnosis of pulmonary ground-glass nodules].

医学 放射科 人工智能 病理 计算机科学
作者
Y J Li,Yi Wang,Zhao Qiu
出处
期刊:PubMed 卷期号:47 (6): 566-570
标识
DOI:10.3760/cma.j.cn112147-20231214-00370
摘要

Lung cancer, which accounts for about 18% of all cancer-related deaths worldwide, has a dismal 5-year survival rate of less than 20%. Survival rates for early-stage lung cancers (stages IA1, IA2, IA3, and IB, according to the TNM staging system) are significantly higher, underscoring the critical importance of early detection, diagnosis, and treatment. Ground-glass nodules (GGNs), which are commonly seen on lung imaging, can be indicative of both benign and malignant lesions. For clinicians, accurately characterizing GGNs and choosing the right management strategies present significant challenges. Artificial intelligence (AI), specifically deep learning algorithms, has shown promise in the evaluation of GGNs by analyzing complex imaging data and predicting the nature of GGNs, including their benign or malignant status, pathological subtypes, and genetic mutations such as epidermal growth factor receptor (EGFR) mutations. By integrating imaging features and clinical data, AI models have demonstrated high accuracy in distinguishing between benign and malignant GGNs and in predicting specific pathological subtypes. In addition, AI has shown promise in predicting genetic mutations such as EGFR mutations, which are critical for personalized treatment decisions in lung cancer. While AI offers significant potential to improve the accuracy and efficiency of GGN assessment, challenges remain, such as the need for extensive validation studies, standardization of imaging protocols, and improving the interpretability of AI algorithms. In summary, AI has the potential to revolutionise the management of GGNs by providing clinicians with more accurate and timely information for diagnosis and treatment decisions. However, further research and validation are needed to fully realize the benefits of AI in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘岩发布了新的文献求助10
1秒前
1秒前
DI发布了新的文献求助10
1秒前
1秒前
carat发布了新的文献求助20
2秒前
gate发布了新的文献求助10
2秒前
3秒前
领导范儿应助驰驰采纳,获得10
3秒前
Kayla完成签到 ,获得积分10
4秒前
优雅的幼丝完成签到,获得积分20
4秒前
酷酷发布了新的文献求助10
6秒前
7秒前
猪猪猪发布了新的文献求助30
9秒前
9秒前
Wells完成签到,获得积分10
9秒前
9秒前
眯眯眼的静柏完成签到,获得积分10
9秒前
西城锡城发布了新的文献求助10
11秒前
狂野悟空完成签到,获得积分10
11秒前
liushuyu发布了新的文献求助10
12秒前
壮观的向雁完成签到,获得积分20
12秒前
ephore应助gate采纳,获得30
12秒前
小呆陶陶完成签到 ,获得积分10
13秒前
奶油布丁完成签到,获得积分10
14秒前
14秒前
跑快点发布了新的文献求助10
14秒前
lbma完成签到,获得积分10
14秒前
15秒前
东东完成签到,获得积分20
16秒前
思源应助科研通管家采纳,获得10
16秒前
一一应助科研通管家采纳,获得20
16秒前
李爱国应助科研通管家采纳,获得10
16秒前
大个应助科研通管家采纳,获得10
16秒前
FashionBoy应助科研通管家采纳,获得10
16秒前
Akim应助科研通管家采纳,获得10
16秒前
劲秉应助科研通管家采纳,获得10
17秒前
搜集达人应助科研通管家采纳,获得10
17秒前
在水一方应助科研通管家采纳,获得20
17秒前
Candice应助科研通管家采纳,获得10
17秒前
在水一方应助科研通管家采纳,获得10
17秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Impiego dell’associazione acetazolamide/pentossifillina nel trattamento dell’ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 480
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3290831
求助须知:如何正确求助?哪些是违规求助? 2927395
关于积分的说明 8432029
捐赠科研通 2598798
什么是DOI,文献DOI怎么找? 1418108
科研通“疑难数据库(出版商)”最低求助积分说明 660026
邀请新用户注册赠送积分活动 642619