[Artificial intelligence research advances in discrimination and diagnosis of pulmonary ground-glass nodules].

医学 放射科 人工智能 病理 计算机科学
作者
Y J Li,Yi Wang,Zhao Qiu
出处
期刊:PubMed 卷期号:47 (6): 566-570
标识
DOI:10.3760/cma.j.cn112147-20231214-00370
摘要

Lung cancer, which accounts for about 18% of all cancer-related deaths worldwide, has a dismal 5-year survival rate of less than 20%. Survival rates for early-stage lung cancers (stages IA1, IA2, IA3, and IB, according to the TNM staging system) are significantly higher, underscoring the critical importance of early detection, diagnosis, and treatment. Ground-glass nodules (GGNs), which are commonly seen on lung imaging, can be indicative of both benign and malignant lesions. For clinicians, accurately characterizing GGNs and choosing the right management strategies present significant challenges. Artificial intelligence (AI), specifically deep learning algorithms, has shown promise in the evaluation of GGNs by analyzing complex imaging data and predicting the nature of GGNs, including their benign or malignant status, pathological subtypes, and genetic mutations such as epidermal growth factor receptor (EGFR) mutations. By integrating imaging features and clinical data, AI models have demonstrated high accuracy in distinguishing between benign and malignant GGNs and in predicting specific pathological subtypes. In addition, AI has shown promise in predicting genetic mutations such as EGFR mutations, which are critical for personalized treatment decisions in lung cancer. While AI offers significant potential to improve the accuracy and efficiency of GGN assessment, challenges remain, such as the need for extensive validation studies, standardization of imaging protocols, and improving the interpretability of AI algorithms. In summary, AI has the potential to revolutionise the management of GGNs by providing clinicians with more accurate and timely information for diagnosis and treatment decisions. However, further research and validation are needed to fully realize the benefits of AI in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hey完成签到 ,获得积分10
刚刚
韩野完成签到,获得积分10
1秒前
7弥LY完成签到 ,获得积分10
1秒前
1秒前
1秒前
辛辛那提完成签到,获得积分10
1秒前
2秒前
丁仪发布了新的文献求助10
2秒前
3秒前
凉雨街发布了新的文献求助10
3秒前
3秒前
4秒前
hui发布了新的文献求助10
4秒前
4秒前
球球尧伞耳完成签到,获得积分10
5秒前
钮卿完成签到 ,获得积分10
6秒前
6秒前
无私的颤完成签到,获得积分10
6秒前
我是老大应助xxxxx采纳,获得10
6秒前
苏哼哼发布了新的文献求助10
6秒前
6秒前
小郭小郭福气多多完成签到,获得积分10
6秒前
单身的世倌完成签到,获得积分20
6秒前
陈晓聪完成签到,获得积分10
7秒前
7秒前
ljfarm发布了新的文献求助10
7秒前
7秒前
7秒前
Zzz_Carlos完成签到 ,获得积分10
7秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
研友_ZegMrL完成签到,获得积分10
8秒前
踏实的白羊完成签到,获得积分10
9秒前
lalala发布了新的文献求助10
9秒前
丁仪完成签到,获得积分10
9秒前
Singularity应助wen采纳,获得10
9秒前
liu发布了新的文献求助10
9秒前
paprika完成签到,获得积分10
9秒前
华仔应助猪猪猪采纳,获得10
10秒前
方法法国衣服头发完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4614581
求助须知:如何正确求助?哪些是违规求助? 4018748
关于积分的说明 12439646
捐赠科研通 3701503
什么是DOI,文献DOI怎么找? 2041241
邀请新用户注册赠送积分活动 1073983
科研通“疑难数据库(出版商)”最低求助积分说明 957639