Gastric Cancer Assembloids Derived from Patient‐Derived Xenografts: A Preclinical Model for Therapeutic Drug Screening

癌症 医学 药品 药理学 肿瘤科 内科学
作者
Xinxin Xu,Yunhe Gao,Jianli Dai,Sheng Wang,Zixuan Wang,Wenquan Liang,Qing Zhang,Wenbo Ma,Zibo Liu,Hao Luo,Zhi Qiao,Li Li,Zijian Wang,Lin Chen,Yanmei Zhang,Zhuo Xiong
出处
期刊:Small methods [Wiley]
卷期号:8 (9)
标识
DOI:10.1002/smtd.202400204
摘要

Abstract The construction of reliable preclinical models is crucial for understanding the molecular mechanisms involved in gastric cancer and for advancing precision medicine. Currently, existing in vitro tumor models often do not accurately replicate the human gastric cancer environment and are unsuitable for high‐throughput therapeutic drug screening. In this study, droplet microfluidic technology is employed to create novel gastric cancer assembloids by encapsulating patient‐derived xenograft gastric cancer cells and patient stromal cells in Gelatin methacryloyl (GelMA)‐Gelatin‐Matrigel microgels. The usage of GelMA‐Gelatin‐Matrigel composite hydrogel effectively alleviated cell aggregation and sedimentation during the assembly process, allowing for the handling of large volumes of cell‐laden hydrogel and the uniform generation of assembloids in a high‐throughput manner. Notably, the patient‐derived xenograft assembloids exhibited high consistency with primary tumors at both transcriptomic and histological levels, and can be efficiently scaled up for preclinical drug screening efforts. Furthermore, the drug screening results clearly demonstrated that the in vitro assembloid model closely mirrored in vivo drug responses. Thus, these findings suggest that gastric cancer assembloids, which effectively replicate the in vivo tumor microenvironment, show promise for enabling more precise high‐throughput drug screening and predicting the clinical outcomes of various drugs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
蓝胖胖蓝完成签到,获得积分10
1秒前
1秒前
文艺鞋子完成签到,获得积分10
3秒前
达雨完成签到,获得积分20
3秒前
away发布了新的文献求助10
4秒前
feitian201861完成签到,获得积分10
4秒前
youyuguang完成签到 ,获得积分10
4秒前
森淼发布了新的文献求助10
4秒前
GERRARD完成签到,获得积分10
5秒前
文艺鞋子发布了新的文献求助10
5秒前
Zac应助害怕的冷荷采纳,获得10
5秒前
冷艳的凡阳完成签到,获得积分10
6秒前
小蘑菇应助xzx7086采纳,获得10
6秒前
qin希望应助海洋采纳,获得10
7秒前
guojingjing发布了新的文献求助10
7秒前
李小鑫吖完成签到,获得积分10
9秒前
今夕何夕完成签到,获得积分10
9秒前
科研小能手完成签到,获得积分10
9秒前
hx驳回了CipherSage应助
9秒前
乐观的凌兰完成签到 ,获得积分10
10秒前
文献通完成签到 ,获得积分10
10秒前
烟花应助问津采纳,获得10
12秒前
12秒前
Blue完成签到,获得积分10
12秒前
Balance Man完成签到 ,获得积分10
13秒前
阿达完成签到 ,获得积分10
13秒前
YAMO一完成签到,获得积分10
14秒前
五斤老陈醋完成签到,获得积分10
15秒前
15秒前
15秒前
1111完成签到,获得积分10
16秒前
无所事事的無无完成签到,获得积分10
16秒前
xiaojinzi完成签到 ,获得积分10
16秒前
耍酷的白桃完成签到,获得积分10
17秒前
谨慎的雨琴完成签到,获得积分10
17秒前
Tomi发布了新的文献求助10
17秒前
努力搬砖的小胡完成签到,获得积分10
17秒前
1107任务报告完成签到,获得积分10
17秒前
鲜艳的皮皮虾完成签到 ,获得积分10
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555935
求助须知:如何正确求助?哪些是违规求助? 3131542
关于积分的说明 9391519
捐赠科研通 2831325
什么是DOI,文献DOI怎么找? 1556415
邀请新用户注册赠送积分活动 726573
科研通“疑难数据库(出版商)”最低求助积分说明 715890