Gastric Cancer Assembloids Derived from Patient‐Derived Xenografts: A Preclinical Model for Therapeutic Drug Screening

癌症 医学 药品 药理学 肿瘤科 内科学
作者
Xinxin Xu,Yunhe Gao,Jianli Dai,Sheng Wang,Zixuan Wang,Wenquan Liang,Qing Zhang,Wenbo Ma,Zibo Liu,Hao Luo,Zhi Qiao,Li Li,Zijian Wang,Lin Chen,Yanmei Zhang,Zhuo Xiong
出处
期刊:Small methods [Wiley]
卷期号:8 (9)
标识
DOI:10.1002/smtd.202400204
摘要

Abstract The construction of reliable preclinical models is crucial for understanding the molecular mechanisms involved in gastric cancer and for advancing precision medicine. Currently, existing in vitro tumor models often do not accurately replicate the human gastric cancer environment and are unsuitable for high‐throughput therapeutic drug screening. In this study, droplet microfluidic technology is employed to create novel gastric cancer assembloids by encapsulating patient‐derived xenograft gastric cancer cells and patient stromal cells in Gelatin methacryloyl (GelMA)‐Gelatin‐Matrigel microgels. The usage of GelMA‐Gelatin‐Matrigel composite hydrogel effectively alleviated cell aggregation and sedimentation during the assembly process, allowing for the handling of large volumes of cell‐laden hydrogel and the uniform generation of assembloids in a high‐throughput manner. Notably, the patient‐derived xenograft assembloids exhibited high consistency with primary tumors at both transcriptomic and histological levels, and can be efficiently scaled up for preclinical drug screening efforts. Furthermore, the drug screening results clearly demonstrated that the in vitro assembloid model closely mirrored in vivo drug responses. Thus, these findings suggest that gastric cancer assembloids, which effectively replicate the in vivo tumor microenvironment, show promise for enabling more precise high‐throughput drug screening and predicting the clinical outcomes of various drugs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我是老大应助单薄海亦采纳,获得10
1秒前
标致小甜瓜完成签到,获得积分10
1秒前
1秒前
1秒前
华仔应助饼大王采纳,获得10
1秒前
shanshan发布了新的文献求助10
1秒前
小田发布了新的文献求助10
2秒前
2秒前
实之完成签到,获得积分10
2秒前
3秒前
香蕉觅云应助欢呼天奇采纳,获得30
3秒前
3秒前
jks发布了新的文献求助10
4秒前
怡然诗翠发布了新的文献求助10
4秒前
4秒前
5秒前
宇哈哈完成签到,获得积分10
5秒前
忧伤的白筠应助Q11采纳,获得30
6秒前
6秒前
小马完成签到,获得积分20
6秒前
机灵的安青完成签到,获得积分10
6秒前
赘婿应助sun采纳,获得10
7秒前
深情安青应助孝顺的碧琴采纳,获得10
7秒前
36456657发布了新的文献求助10
7秒前
烫嘴普通话完成签到,获得积分10
8秒前
SciGPT应助顺利毕业采纳,获得10
8秒前
清清子完成签到,获得积分10
8秒前
9秒前
充电宝应助yufeng采纳,获得10
9秒前
林子发布了新的文献求助20
10秒前
xiang发布了新的文献求助10
11秒前
Minmin发布了新的文献求助10
11秒前
清清子发布了新的文献求助10
12秒前
外向梨愁发布了新的文献求助10
12秒前
12秒前
万能图书馆应助YUMI采纳,获得10
13秒前
delll完成签到 ,获得积分10
13秒前
科研通AI5应助lh采纳,获得10
13秒前
ccrliubi完成签到,获得积分20
13秒前
I蛋完成签到,获得积分20
13秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3479035
求助须知:如何正确求助?哪些是违规求助? 3069819
关于积分的说明 9115453
捐赠科研通 2761613
什么是DOI,文献DOI怎么找? 1515399
邀请新用户注册赠送积分活动 700890
科研通“疑难数据库(出版商)”最低求助积分说明 699911