Machine learning based on functional principal component analysis to quantify the effects of the main drivers of wheat yields

主成分分析 气候变化 比例(比率) 产量(工程) 统计 作物产量 回归分析 回归 数学 随机森林 领域(数学) 函数主成分分析 环境科学 计算机科学 机器学习 生态学 地理 生物 地图学 冶金 材料科学 纯数学
作者
Florent Bonneu,David Makowski,Julien Joly,Denis Allard
出处
期刊:European Journal of Agronomy [Elsevier BV]
卷期号:159: 127254-127254
标识
DOI:10.1016/j.eja.2024.127254
摘要

Assessing the response of crop yield to year-to-year climate variability at the field scale is often done using process-based models and regression techniques. Although powerful, these tools rely on strong assumptions and can lead to substantial prediction errors. In this study, we investigate the use of a flexible machine learning algorithm combining Functional Principal Component Analysis and Random Forest, to relate field scale wheat yield to local daily climate variables. Instead of computing seasonal, monthly or any other arbitrary time-frame climate averages, climate time series are decomposed by Functional Principal Component Analysis into a few data-driven basis functions, called Principal Curves, in order to summarize the dynamic of key climate variables by a limited number of interpretable components. Scores associated to these components are then used as inputs of a Random Forest algorithm for yield prediction and for analysing important factors responsible for yield variability. To evaluate our approach, we use a French national database including wheat yield data as well as climate and management practice data for 298 farm fields from 2011 to 2016 in four main producing regions. Depending on the regions, our approach can explain from 62 % to 81 % of the yield variability when both agronomic and climate variables are included, down to 56–81 % when ignoring agronomic variables and 51–74 % when ignoring climate variables. Based on a year-by-year cross-validation, RMSE ranges from 0.5 t ha−1 to 2.1 t ha−1 in non-extreme years (2012–2015). However, prediction error can reach 3.6 t ha−1 in case of exceptional weather conditions, such as those experienced in 2016 in Northern France. We find that this new approach performs in most cases better than the same machine learning algorithm using the usual time averages of climate variables, without the need to choose an arbitrary time-frame. We then show how important patterns in weather time series can be identified and how their effects on yield can be interpreted using the proposed modelling framework.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哇咔咔发布了新的文献求助10
刚刚
刚刚
刚刚
min完成签到,获得积分10
刚刚
刚刚
1秒前
偷喝10瓶汽水关注了科研通微信公众号
1秒前
1秒前
煤炭不甜发布了新的文献求助10
1秒前
1秒前
zyzlliu完成签到,获得积分10
2秒前
2秒前
划分完成签到,获得积分10
2秒前
青木蓝完成签到,获得积分10
2秒前
2秒前
彭于晏应助合适不悔采纳,获得10
2秒前
2秒前
木木雨完成签到,获得积分10
2秒前
Orange应助聪慧恶天采纳,获得10
3秒前
3秒前
3秒前
3秒前
3秒前
SciGPT应助zzz采纳,获得10
4秒前
4秒前
上官若男应助idemipere采纳,获得10
4秒前
小福发布了新的文献求助10
5秒前
5秒前
mmlikeu发布了新的文献求助10
5秒前
斯文败类应助Ben34采纳,获得10
5秒前
MishimaErika发布了新的文献求助10
5秒前
PY完成签到,获得积分10
5秒前
脑洞疼应助会撒娇的飞烟采纳,获得10
5秒前
min发布了新的文献求助10
5秒前
echo发布了新的文献求助10
6秒前
轮海完成签到,获得积分10
6秒前
6秒前
caicai发布了新的文献求助10
6秒前
123发布了新的文献求助10
6秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4615886
求助须知:如何正确求助?哪些是违规求助? 4019358
关于积分的说明 12442023
捐赠科研通 3702534
什么是DOI,文献DOI怎么找? 2041597
邀请新用户注册赠送积分活动 1074258
科研通“疑难数据库(出版商)”最低求助积分说明 957889