Machine learning based on functional principal component analysis to quantify the effects of the main drivers of wheat yields

主成分分析 气候变化 比例(比率) 产量(工程) 统计 作物产量 回归分析 回归 数学 随机森林 领域(数学) 函数主成分分析 环境科学 计算机科学 机器学习 生态学 地理 材料科学 地图学 纯数学 冶金 生物
作者
Florent Bonneu,David Makowski,Julien Joly,Denis Allard
出处
期刊:European Journal of Agronomy [Elsevier]
卷期号:159: 127254-127254
标识
DOI:10.1016/j.eja.2024.127254
摘要

Assessing the response of crop yield to year-to-year climate variability at the field scale is often done using process-based models and regression techniques. Although powerful, these tools rely on strong assumptions and can lead to substantial prediction errors. In this study, we investigate the use of a flexible machine learning algorithm combining Functional Principal Component Analysis and Random Forest, to relate field scale wheat yield to local daily climate variables. Instead of computing seasonal, monthly or any other arbitrary time-frame climate averages, climate time series are decomposed by Functional Principal Component Analysis into a few data-driven basis functions, called Principal Curves, in order to summarize the dynamic of key climate variables by a limited number of interpretable components. Scores associated to these components are then used as inputs of a Random Forest algorithm for yield prediction and for analysing important factors responsible for yield variability. To evaluate our approach, we use a French national database including wheat yield data as well as climate and management practice data for 298 farm fields from 2011 to 2016 in four main producing regions. Depending on the regions, our approach can explain from 62 % to 81 % of the yield variability when both agronomic and climate variables are included, down to 56–81 % when ignoring agronomic variables and 51–74 % when ignoring climate variables. Based on a year-by-year cross-validation, RMSE ranges from 0.5 t ha−1 to 2.1 t ha−1 in non-extreme years (2012–2015). However, prediction error can reach 3.6 t ha−1 in case of exceptional weather conditions, such as those experienced in 2016 in Northern France. We find that this new approach performs in most cases better than the same machine learning algorithm using the usual time averages of climate variables, without the need to choose an arbitrary time-frame. We then show how important patterns in weather time series can be identified and how their effects on yield can be interpreted using the proposed modelling framework.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
城南发布了新的文献求助10
1秒前
充电宝应助稳重向南采纳,获得10
1秒前
2秒前
Lucas应助asdfgh采纳,获得10
2秒前
3秒前
不晚完成签到,获得积分10
4秒前
5秒前
123发布了新的文献求助10
5秒前
Xin发布了新的文献求助10
5秒前
5秒前
康康发布了新的文献求助10
7秒前
zwyzzz关注了科研通微信公众号
8秒前
8秒前
科研通AI5应助4311采纳,获得50
8秒前
科研通AI5应助刘易采纳,获得30
9秒前
10秒前
无花果应助段盼兰采纳,获得10
10秒前
shelemi发布了新的文献求助10
10秒前
Hello应助舒服的水壶采纳,获得10
11秒前
和ruby完成签到,获得积分10
12秒前
13秒前
Lucas应助Cancer采纳,获得10
15秒前
16秒前
17秒前
在水一方应助科研后腿采纳,获得10
18秒前
20秒前
Ava应助会飞的猪采纳,获得10
20秒前
pero完成签到,获得积分10
20秒前
小波完成签到 ,获得积分10
21秒前
dbq发布了新的文献求助10
22秒前
SYLH应助淡定芷容采纳,获得10
23秒前
23秒前
大佛老爷完成签到,获得积分10
23秒前
小扇完成签到,获得积分10
24秒前
领导范儿应助ll采纳,获得10
24秒前
24秒前
胡图图完成签到,获得积分10
24秒前
我爱学习完成签到,获得积分10
25秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Conference Record, IAS Annual Meeting 1977 1050
Les Mantodea de Guyane Insecta, Polyneoptera 1000
England and the Discovery of America, 1481-1620 600
Teaching language in context (Third edition) by Derewianka, Beverly; Jones, Pauline 550
Oligonucleotide Synthesis: a Practical Approach 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3590055
求助须知:如何正确求助?哪些是违规求助? 3158483
关于积分的说明 9520181
捐赠科研通 2861460
什么是DOI,文献DOI怎么找? 1572590
邀请新用户注册赠送积分活动 737955
科研通“疑难数据库(出版商)”最低求助积分说明 722572