亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine learning based on functional principal component analysis to quantify the effects of the main drivers of wheat yields

主成分分析 气候变化 比例(比率) 产量(工程) 统计 作物产量 回归分析 回归 数学 随机森林 领域(数学) 函数主成分分析 环境科学 计算机科学 机器学习 生态学 地理 生物 地图学 冶金 材料科学 纯数学
作者
Florent Bonneu,David Makowski,Julien Joly,Denis Allard
出处
期刊:European Journal of Agronomy [Elsevier]
卷期号:159: 127254-127254
标识
DOI:10.1016/j.eja.2024.127254
摘要

Assessing the response of crop yield to year-to-year climate variability at the field scale is often done using process-based models and regression techniques. Although powerful, these tools rely on strong assumptions and can lead to substantial prediction errors. In this study, we investigate the use of a flexible machine learning algorithm combining Functional Principal Component Analysis and Random Forest, to relate field scale wheat yield to local daily climate variables. Instead of computing seasonal, monthly or any other arbitrary time-frame climate averages, climate time series are decomposed by Functional Principal Component Analysis into a few data-driven basis functions, called Principal Curves, in order to summarize the dynamic of key climate variables by a limited number of interpretable components. Scores associated to these components are then used as inputs of a Random Forest algorithm for yield prediction and for analysing important factors responsible for yield variability. To evaluate our approach, we use a French national database including wheat yield data as well as climate and management practice data for 298 farm fields from 2011 to 2016 in four main producing regions. Depending on the regions, our approach can explain from 62 % to 81 % of the yield variability when both agronomic and climate variables are included, down to 56–81 % when ignoring agronomic variables and 51–74 % when ignoring climate variables. Based on a year-by-year cross-validation, RMSE ranges from 0.5 t ha−1 to 2.1 t ha−1 in non-extreme years (2012–2015). However, prediction error can reach 3.6 t ha−1 in case of exceptional weather conditions, such as those experienced in 2016 in Northern France. We find that this new approach performs in most cases better than the same machine learning algorithm using the usual time averages of climate variables, without the need to choose an arbitrary time-frame. We then show how important patterns in weather time series can be identified and how their effects on yield can be interpreted using the proposed modelling framework.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
白家瑜发布了新的文献求助10
3秒前
8秒前
10秒前
土又鸟发布了新的文献求助10
11秒前
归尘应助harry采纳,获得10
11秒前
xuanjiawu完成签到 ,获得积分10
13秒前
小蘑菇应助土又鸟采纳,获得10
27秒前
style完成签到,获得积分10
27秒前
SciGPT应助felix采纳,获得10
39秒前
41秒前
NEKO发布了新的文献求助10
46秒前
白家瑜完成签到 ,获得积分20
47秒前
陆lyy发布了新的文献求助10
50秒前
sn完成签到 ,获得积分10
1分钟前
陆lyy完成签到,获得积分20
1分钟前
kong完成签到 ,获得积分10
1分钟前
1分钟前
土又鸟完成签到,获得积分10
1分钟前
ceeray23发布了新的文献求助20
1分钟前
土又鸟发布了新的文献求助10
1分钟前
nini完成签到,获得积分10
1分钟前
1分钟前
1分钟前
吧唧吧唧发布了新的文献求助10
1分钟前
allover完成签到,获得积分10
1分钟前
星辰大海应助吧唧吧唧采纳,获得10
1分钟前
2分钟前
烈阳发布了新的文献求助10
2分钟前
小二郎应助TwinQ采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
津津发布了新的文献求助10
2分钟前
2分钟前
2分钟前
NEKO发布了新的文献求助10
2分钟前
TwinQ发布了新的文献求助10
2分钟前
aurora完成签到,获得积分10
2分钟前
津津完成签到,获得积分10
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
ACOG Practice Bulletin: Polycystic Ovary Syndrome 500
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603266
求助须知:如何正确求助?哪些是违规求助? 4688354
关于积分的说明 14853288
捐赠科研通 4688706
什么是DOI,文献DOI怎么找? 2540535
邀请新用户注册赠送积分活动 1506982
关于科研通互助平台的介绍 1471543