Machine learning based on functional principal component analysis to quantify the effects of the main drivers of wheat yields

主成分分析 气候变化 比例(比率) 产量(工程) 统计 作物产量 回归分析 回归 数学 随机森林 领域(数学) 函数主成分分析 环境科学 计算机科学 机器学习 生态学 地理 材料科学 地图学 纯数学 冶金 生物
作者
Florent Bonneu,David Makowski,Julien Joly,Denis Allard
出处
期刊:European Journal of Agronomy [Elsevier BV]
卷期号:159: 127254-127254
标识
DOI:10.1016/j.eja.2024.127254
摘要

Assessing the response of crop yield to year-to-year climate variability at the field scale is often done using process-based models and regression techniques. Although powerful, these tools rely on strong assumptions and can lead to substantial prediction errors. In this study, we investigate the use of a flexible machine learning algorithm combining Functional Principal Component Analysis and Random Forest, to relate field scale wheat yield to local daily climate variables. Instead of computing seasonal, monthly or any other arbitrary time-frame climate averages, climate time series are decomposed by Functional Principal Component Analysis into a few data-driven basis functions, called Principal Curves, in order to summarize the dynamic of key climate variables by a limited number of interpretable components. Scores associated to these components are then used as inputs of a Random Forest algorithm for yield prediction and for analysing important factors responsible for yield variability. To evaluate our approach, we use a French national database including wheat yield data as well as climate and management practice data for 298 farm fields from 2011 to 2016 in four main producing regions. Depending on the regions, our approach can explain from 62 % to 81 % of the yield variability when both agronomic and climate variables are included, down to 56–81 % when ignoring agronomic variables and 51–74 % when ignoring climate variables. Based on a year-by-year cross-validation, RMSE ranges from 0.5 t ha−1 to 2.1 t ha−1 in non-extreme years (2012–2015). However, prediction error can reach 3.6 t ha−1 in case of exceptional weather conditions, such as those experienced in 2016 in Northern France. We find that this new approach performs in most cases better than the same machine learning algorithm using the usual time averages of climate variables, without the need to choose an arbitrary time-frame. We then show how important patterns in weather time series can be identified and how their effects on yield can be interpreted using the proposed modelling framework.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
炙热乌冬面完成签到 ,获得积分20
刚刚
烟花应助lllyyy采纳,获得10
2秒前
5秒前
煎蛋关注了科研通微信公众号
5秒前
我是老大应助likke采纳,获得10
6秒前
JamesPei应助xing采纳,获得10
6秒前
11秒前
chiech发布了新的文献求助10
11秒前
11235完成签到,获得积分10
12秒前
PU聚氨酯完成签到,获得积分10
12秒前
椎名理央完成签到,获得积分10
12秒前
niceday123完成签到,获得积分10
13秒前
你好关注了科研通微信公众号
13秒前
haha发布了新的文献求助10
15秒前
追寻无施完成签到,获得积分10
17秒前
大模型应助着急的棉花糖采纳,获得10
17秒前
123yyaa发布了新的文献求助10
17秒前
18秒前
huang完成签到,获得积分10
18秒前
18秒前
20秒前
糖果不甜完成签到,获得积分10
20秒前
无花果应助婷婷采纳,获得10
21秒前
22秒前
Akim应助刘佳慧采纳,获得10
24秒前
24秒前
尹天奇发布了新的文献求助10
24秒前
24秒前
田様应助科研通管家采纳,获得10
26秒前
完美世界应助科研通管家采纳,获得10
27秒前
科研通AI2S应助科研通管家采纳,获得10
27秒前
27秒前
ccm应助科研通管家采纳,获得20
27秒前
Owen应助科研通管家采纳,获得10
27秒前
科研通AI6应助科研通管家采纳,获得10
27秒前
huang发布了新的文献求助10
27秒前
科研通AI6应助科研通管家采纳,获得10
27秒前
上官若男应助科研通管家采纳,获得20
27秒前
烟花应助科研通管家采纳,获得10
27秒前
所所应助科研通管家采纳,获得10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5288354
求助须知:如何正确求助?哪些是违规求助? 4440235
关于积分的说明 13824120
捐赠科研通 4322496
什么是DOI,文献DOI怎么找? 2372594
邀请新用户注册赠送积分活动 1368040
关于科研通互助平台的介绍 1331818