Machine learning based on functional principal component analysis to quantify the effects of the main drivers of wheat yields

主成分分析 气候变化 比例(比率) 产量(工程) 统计 作物产量 回归分析 回归 数学 随机森林 领域(数学) 函数主成分分析 环境科学 计算机科学 机器学习 生态学 地理 材料科学 地图学 纯数学 冶金 生物
作者
Florent Bonneu,David Makowski,Julien Joly,Denis Allard
出处
期刊:European Journal of Agronomy [Elsevier BV]
卷期号:159: 127254-127254
标识
DOI:10.1016/j.eja.2024.127254
摘要

Assessing the response of crop yield to year-to-year climate variability at the field scale is often done using process-based models and regression techniques. Although powerful, these tools rely on strong assumptions and can lead to substantial prediction errors. In this study, we investigate the use of a flexible machine learning algorithm combining Functional Principal Component Analysis and Random Forest, to relate field scale wheat yield to local daily climate variables. Instead of computing seasonal, monthly or any other arbitrary time-frame climate averages, climate time series are decomposed by Functional Principal Component Analysis into a few data-driven basis functions, called Principal Curves, in order to summarize the dynamic of key climate variables by a limited number of interpretable components. Scores associated to these components are then used as inputs of a Random Forest algorithm for yield prediction and for analysing important factors responsible for yield variability. To evaluate our approach, we use a French national database including wheat yield data as well as climate and management practice data for 298 farm fields from 2011 to 2016 in four main producing regions. Depending on the regions, our approach can explain from 62 % to 81 % of the yield variability when both agronomic and climate variables are included, down to 56–81 % when ignoring agronomic variables and 51–74 % when ignoring climate variables. Based on a year-by-year cross-validation, RMSE ranges from 0.5 t ha−1 to 2.1 t ha−1 in non-extreme years (2012–2015). However, prediction error can reach 3.6 t ha−1 in case of exceptional weather conditions, such as those experienced in 2016 in Northern France. We find that this new approach performs in most cases better than the same machine learning algorithm using the usual time averages of climate variables, without the need to choose an arbitrary time-frame. We then show how important patterns in weather time series can be identified and how their effects on yield can be interpreted using the proposed modelling framework.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yorshka完成签到,获得积分10
1秒前
1秒前
呵呵发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
田様应助dddnnn采纳,获得10
3秒前
8o7XJ7发布了新的文献求助30
4秒前
long应助杨丽采纳,获得10
4秒前
lilili应助杨丽采纳,获得10
4秒前
无花果应助霍健霏采纳,获得10
5秒前
zoe666发布了新的文献求助30
5秒前
LamChem发布了新的文献求助10
5秒前
5秒前
fyc完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
8秒前
Yuenyee应助123采纳,获得10
8秒前
9秒前
勤恳靖巧发布了新的文献求助10
10秒前
JamesPei应助lcc采纳,获得10
11秒前
幸运星完成签到,获得积分10
12秒前
清风完成签到 ,获得积分10
12秒前
12秒前
丘比特应助大白采纳,获得10
12秒前
晨曦曦完成签到 ,获得积分10
13秒前
14秒前
贝贝发布了新的文献求助10
14秒前
15秒前
16秒前
Orange应助科研通管家采纳,获得10
16秒前
上官若男应助科研通管家采纳,获得10
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
JamesPei应助科研通管家采纳,获得10
16秒前
脑洞疼应助科研通管家采纳,获得10
16秒前
16秒前
田様应助科研通管家采纳,获得10
16秒前
情怀应助科研通管家采纳,获得10
16秒前
cosmos应助科研通管家采纳,获得10
16秒前
隐形曼青应助科研通管家采纳,获得10
16秒前
Lucas应助科研通管家采纳,获得10
16秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5125011
求助须知:如何正确求助?哪些是违规求助? 4329012
关于积分的说明 13489539
捐赠科研通 4163648
什么是DOI,文献DOI怎么找? 2282463
邀请新用户注册赠送积分活动 1283623
关于科研通互助平台的介绍 1222905