Machine learning based on functional principal component analysis to quantify the effects of the main drivers of wheat yields

主成分分析 气候变化 比例(比率) 产量(工程) 统计 作物产量 回归分析 回归 数学 随机森林 领域(数学) 函数主成分分析 环境科学 计算机科学 机器学习 生态学 地理 生物 地图学 冶金 材料科学 纯数学
作者
Florent Bonneu,David Makowski,Julien Joly,Denis Allard
出处
期刊:European Journal of Agronomy [Elsevier]
卷期号:159: 127254-127254
标识
DOI:10.1016/j.eja.2024.127254
摘要

Assessing the response of crop yield to year-to-year climate variability at the field scale is often done using process-based models and regression techniques. Although powerful, these tools rely on strong assumptions and can lead to substantial prediction errors. In this study, we investigate the use of a flexible machine learning algorithm combining Functional Principal Component Analysis and Random Forest, to relate field scale wheat yield to local daily climate variables. Instead of computing seasonal, monthly or any other arbitrary time-frame climate averages, climate time series are decomposed by Functional Principal Component Analysis into a few data-driven basis functions, called Principal Curves, in order to summarize the dynamic of key climate variables by a limited number of interpretable components. Scores associated to these components are then used as inputs of a Random Forest algorithm for yield prediction and for analysing important factors responsible for yield variability. To evaluate our approach, we use a French national database including wheat yield data as well as climate and management practice data for 298 farm fields from 2011 to 2016 in four main producing regions. Depending on the regions, our approach can explain from 62 % to 81 % of the yield variability when both agronomic and climate variables are included, down to 56–81 % when ignoring agronomic variables and 51–74 % when ignoring climate variables. Based on a year-by-year cross-validation, RMSE ranges from 0.5 t ha−1 to 2.1 t ha−1 in non-extreme years (2012–2015). However, prediction error can reach 3.6 t ha−1 in case of exceptional weather conditions, such as those experienced in 2016 in Northern France. We find that this new approach performs in most cases better than the same machine learning algorithm using the usual time averages of climate variables, without the need to choose an arbitrary time-frame. We then show how important patterns in weather time series can be identified and how their effects on yield can be interpreted using the proposed modelling framework.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助Richard采纳,获得10
刚刚
旺旺完成签到 ,获得积分10
1秒前
2秒前
缥缈书本完成签到 ,获得积分10
2秒前
幸福台灯发布了新的文献求助10
3秒前
蟑螂恶霸完成签到,获得积分10
3秒前
4秒前
tt完成签到 ,获得积分10
5秒前
明理慕灵发布了新的文献求助10
6秒前
发如雪发布了新的文献求助10
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
在水一方应助科研通管家采纳,获得10
9秒前
勤恳雅莉应助科研通管家采纳,获得20
10秒前
小二郎应助科研通管家采纳,获得10
10秒前
10秒前
给我打只山鹰吧完成签到,获得积分10
10秒前
打打应助michael采纳,获得10
10秒前
10秒前
CodeCraft应助幸福台灯采纳,获得10
11秒前
大力的问蕊完成签到,获得积分10
13秒前
nan发布了新的文献求助10
14秒前
16秒前
Xiaoxiannv发布了新的文献求助10
17秒前
DoctorXu完成签到,获得积分10
18秒前
Rsoup发布了新的文献求助30
19秒前
20秒前
火星上的刚完成签到,获得积分10
21秒前
22秒前
22秒前
景清完成签到 ,获得积分10
25秒前
幸福台灯发布了新的文献求助10
28秒前
龙龙宝宝完成签到,获得积分10
29秒前
眨眼完成签到,获得积分10
30秒前
30秒前
30秒前
roro熊发布了新的文献求助10
30秒前
younghippo发布了新的文献求助10
32秒前
龙龙宝宝发布了新的文献求助10
33秒前
hf发布了新的文献求助10
34秒前
李健应助roro熊采纳,获得10
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565622
求助须知:如何正确求助?哪些是违规求助? 4650680
关于积分的说明 14692351
捐赠科研通 4592670
什么是DOI,文献DOI怎么找? 2519689
邀请新用户注册赠送积分活动 1492102
关于科研通互助平台的介绍 1463281