Machine learning based on functional principal component analysis to quantify the effects of the main drivers of wheat yields

主成分分析 气候变化 比例(比率) 产量(工程) 统计 作物产量 回归分析 回归 数学 随机森林 领域(数学) 函数主成分分析 环境科学 计算机科学 机器学习 生态学 地理 材料科学 地图学 纯数学 冶金 生物
作者
Florent Bonneu,David Makowski,Julien Joly,Denis Allard
出处
期刊:European Journal of Agronomy [Elsevier BV]
卷期号:159: 127254-127254
标识
DOI:10.1016/j.eja.2024.127254
摘要

Assessing the response of crop yield to year-to-year climate variability at the field scale is often done using process-based models and regression techniques. Although powerful, these tools rely on strong assumptions and can lead to substantial prediction errors. In this study, we investigate the use of a flexible machine learning algorithm combining Functional Principal Component Analysis and Random Forest, to relate field scale wheat yield to local daily climate variables. Instead of computing seasonal, monthly or any other arbitrary time-frame climate averages, climate time series are decomposed by Functional Principal Component Analysis into a few data-driven basis functions, called Principal Curves, in order to summarize the dynamic of key climate variables by a limited number of interpretable components. Scores associated to these components are then used as inputs of a Random Forest algorithm for yield prediction and for analysing important factors responsible for yield variability. To evaluate our approach, we use a French national database including wheat yield data as well as climate and management practice data for 298 farm fields from 2011 to 2016 in four main producing regions. Depending on the regions, our approach can explain from 62 % to 81 % of the yield variability when both agronomic and climate variables are included, down to 56–81 % when ignoring agronomic variables and 51–74 % when ignoring climate variables. Based on a year-by-year cross-validation, RMSE ranges from 0.5 t ha−1 to 2.1 t ha−1 in non-extreme years (2012–2015). However, prediction error can reach 3.6 t ha−1 in case of exceptional weather conditions, such as those experienced in 2016 in Northern France. We find that this new approach performs in most cases better than the same machine learning algorithm using the usual time averages of climate variables, without the need to choose an arbitrary time-frame. We then show how important patterns in weather time series can be identified and how their effects on yield can be interpreted using the proposed modelling framework.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
feifeizhu完成签到,获得积分10
1秒前
852应助麦子采纳,获得10
1秒前
李明涵发布了新的文献求助10
3秒前
4秒前
地泽万物完成签到,获得积分10
4秒前
annzl发布了新的文献求助10
4秒前
秦佳瑶发布了新的文献求助10
5秒前
科研通AI5应助豆豆采纳,获得10
6秒前
7秒前
晗晗完成签到,获得积分10
8秒前
8秒前
9秒前
无聊的万天完成签到,获得积分10
10秒前
10秒前
昵称呢发布了新的文献求助10
10秒前
11秒前
12秒前
张北海应助嘚嘚采纳,获得20
12秒前
13秒前
充电宝应助留白留白采纳,获得30
13秒前
13秒前
Shalan发布了新的文献求助10
13秒前
晗晗发布了新的文献求助10
14秒前
无风海发布了新的文献求助10
15秒前
等待的啤酒完成签到,获得积分10
16秒前
隐形曼青应助leeeeee采纳,获得10
17秒前
自由梦松完成签到,获得积分10
17秒前
坦率的匪应助称心寒松采纳,获得10
17秒前
FashionBoy应助超级盼烟采纳,获得10
17秒前
19秒前
Eliauk发布了新的文献求助10
19秒前
贺兰发布了新的文献求助10
19秒前
嘚嘚应助文件撤销了驳回
19秒前
20秒前
繁荣的行天完成签到,获得积分10
21秒前
打打应助余南采纳,获得10
21秒前
21秒前
JamesPei应助明理的姿采纳,获得10
23秒前
王大炮发布了新的文献求助10
23秒前
23秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992868
求助须知:如何正确求助?哪些是违规求助? 3533665
关于积分的说明 11263418
捐赠科研通 3273432
什么是DOI,文献DOI怎么找? 1806029
邀请新用户注册赠送积分活动 882931
科研通“疑难数据库(出版商)”最低求助积分说明 809629