Transcriptomics-based liquid biopsy panel for early non-invasive identification of peritoneal recurrence and micrometastasis in locally advanced gastric cancer

微转移 医学 癌症 活检 鉴定(生物学) 胃活检 肿瘤科 内科学 病理 放射科 转移 生物 胃炎 植物
作者
Pingan Ding,Haotian Wu,Jiaxiang Wu,Tongkun Li,Renjun Gu,Lilong Zhang,Peigang Yang,Honghai Guo,Yuan Tian,Jinchen He,Jiaxuan Yang,Na Meng,Xiaolong Li,Lingjiao Meng,Qun Zhao
出处
期刊:Journal of Experimental & Clinical Cancer Research [BioMed Central]
卷期号:43 (1)
标识
DOI:10.1186/s13046-024-03098-5
摘要

Abstract Background This study aimed to develop a novel six-gene expression biomarker panel to enhance the early detection and risk stratification of peritoneal recurrence and micrometastasis in locally advanced gastric cancer (LAGC). Methods We used genome-wide transcriptome profiling and rigorous bioinformatics to identify a six-gene expression biomarker panel. This panel was validated across multiple clinical cohorts using both tissue and liquid biopsy samples to predict peritoneal recurrence and micrometastasis in patients with LAGC. Results Through genome-wide expression profiling, we identified six mRNAs and developed a risk prediction model using 196 samples from a surgical specimen training cohort. This model, incorporating a 6-mRNA panel with clinical features, demonstrated high predictive accuracy for peritoneal recurrence in gastric cancer patients, with an AUC of 0.966 (95% CI: 0.944–0.988). Transitioning from invasive surgical or endoscopic biopsy to noninvasive liquid biopsy, the model retained its predictive efficacy (AUC = 0.963; 95% CI: 0.926–1.000). Additionally, the 6-mRNA panel effectively differentiated patients with or without peritoneal metastasis in 95 peripheral blood specimens (AUC = 0.970; 95% CI: 0.936–1.000) and identified peritoneal micrometastases with a high efficiency (AUC = 0.941; 95% CI: 0.874–1.000). Conclusions Our study provides a novel gene expression biomarker panel that significantly enhances early detection of peritoneal recurrence and micrometastasis in patients with LAGC. The RSA model's predictive capability offers a promising tool for tailored treatment strategies, underscoring the importance of integrating molecular biomarkers with clinical parameters in precision oncology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
林读书完成签到,获得积分10
1秒前
hzs完成签到,获得积分10
1秒前
扣欧克泥发布了新的文献求助10
2秒前
犇骉完成签到,获得积分10
2秒前
2秒前
zhuo完成签到,获得积分10
3秒前
柠檬完成签到,获得积分10
4秒前
zzz完成签到,获得积分10
4秒前
势临完成签到 ,获得积分10
5秒前
7秒前
宋66完成签到,获得积分10
9秒前
10秒前
完美世界应助哈哈哈采纳,获得10
10秒前
飞123发布了新的文献求助10
11秒前
12秒前
NexusExplorer应助li采纳,获得10
12秒前
飘逸的幻灵完成签到,获得积分10
13秒前
我去买个橘子完成签到 ,获得积分10
15秒前
彭于晏应助极品小亮采纳,获得10
16秒前
小欧文完成签到,获得积分10
16秒前
完美世界应助大力的诗蕾采纳,获得10
16秒前
16秒前
我是老大应助YCQ采纳,获得10
16秒前
koukeika完成签到,获得积分10
17秒前
myn1990发布了新的文献求助10
17秒前
17秒前
17秒前
18秒前
guozizi发布了新的文献求助10
19秒前
shentx完成签到,获得积分10
19秒前
JamesPei应助校长采纳,获得10
19秒前
张任的die发布了新的文献求助10
19秒前
雨晨发布了新的文献求助10
20秒前
飞123完成签到,获得积分10
21秒前
hoijuon发布了新的文献求助10
21秒前
英姑应助科研小白采纳,获得10
21秒前
周立成完成签到,获得积分10
22秒前
23秒前
哈哈哈发布了新的文献求助10
23秒前
张任的die完成签到,获得积分10
24秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Toward a Combinatorial Approach for the Prediction of IgG Half-Life and Clearance 500
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3969917
求助须知:如何正确求助?哪些是违规求助? 3514626
关于积分的说明 11175060
捐赠科研通 3249928
什么是DOI,文献DOI怎么找? 1795165
邀请新用户注册赠送积分活动 875617
科研通“疑难数据库(出版商)”最低求助积分说明 804891