Transcriptomics-based liquid biopsy panel for early non-invasive identification of peritoneal recurrence and micrometastasis in locally advanced gastric cancer

微转移 医学 癌症 活检 鉴定(生物学) 胃活检 肿瘤科 内科学 病理 放射科 转移 生物 胃炎 植物
作者
Pingan Ding,Haotian Wu,Jiaxiang Wu,Tongkun Li,Renjun Gu,Lilong Zhang,Peigang Yang,Honghai Guo,Yuan Tian,Jinchen He,Jiaxuan Yang,Na Meng,Xiaolong Li,Lingjiao Meng,Qun Zhao
出处
期刊:Journal of Experimental & Clinical Cancer Research [Springer Nature]
卷期号:43 (1)
标识
DOI:10.1186/s13046-024-03098-5
摘要

Abstract Background This study aimed to develop a novel six-gene expression biomarker panel to enhance the early detection and risk stratification of peritoneal recurrence and micrometastasis in locally advanced gastric cancer (LAGC). Methods We used genome-wide transcriptome profiling and rigorous bioinformatics to identify a six-gene expression biomarker panel. This panel was validated across multiple clinical cohorts using both tissue and liquid biopsy samples to predict peritoneal recurrence and micrometastasis in patients with LAGC. Results Through genome-wide expression profiling, we identified six mRNAs and developed a risk prediction model using 196 samples from a surgical specimen training cohort. This model, incorporating a 6-mRNA panel with clinical features, demonstrated high predictive accuracy for peritoneal recurrence in gastric cancer patients, with an AUC of 0.966 (95% CI: 0.944–0.988). Transitioning from invasive surgical or endoscopic biopsy to noninvasive liquid biopsy, the model retained its predictive efficacy (AUC = 0.963; 95% CI: 0.926–1.000). Additionally, the 6-mRNA panel effectively differentiated patients with or without peritoneal metastasis in 95 peripheral blood specimens (AUC = 0.970; 95% CI: 0.936–1.000) and identified peritoneal micrometastases with a high efficiency (AUC = 0.941; 95% CI: 0.874–1.000). Conclusions Our study provides a novel gene expression biomarker panel that significantly enhances early detection of peritoneal recurrence and micrometastasis in patients with LAGC. The RSA model's predictive capability offers a promising tool for tailored treatment strategies, underscoring the importance of integrating molecular biomarkers with clinical parameters in precision oncology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
青青完成签到 ,获得积分10
1秒前
Chan0501发布了新的文献求助10
1秒前
昭昭完成签到,获得积分10
2秒前
SCI发布了新的文献求助10
2秒前
卓然完成签到,获得积分10
2秒前
李来仪发布了新的文献求助10
3秒前
4秒前
菲菲呀完成签到,获得积分10
4秒前
Rrr发布了新的文献求助10
4秒前
6秒前
陌路完成签到,获得积分10
6秒前
善学以致用应助leon采纳,获得30
6秒前
7秒前
斯文败类应助嘻嘻采纳,获得10
7秒前
科研通AI5应助小只bb采纳,获得30
7秒前
yyyy发布了新的文献求助10
7秒前
2023AKY完成签到,获得积分10
9秒前
9秒前
10秒前
10秒前
彭于晏应助惠惠采纳,获得10
10秒前
风魂剑主完成签到,获得积分10
11秒前
yryzst9899发布了新的文献求助10
11秒前
12秒前
飘逸小笼包完成签到,获得积分10
12秒前
科研小郑完成签到,获得积分10
12秒前
CipherSage应助熊boy采纳,获得10
12秒前
XXGG完成签到 ,获得积分10
13秒前
大个应助舒心赛凤采纳,获得10
13秒前
晨曦发布了新的文献求助10
14秒前
14秒前
ff0110完成签到,获得积分10
15秒前
星辰大海应助苹果萧采纳,获得10
15秒前
徐徐完成签到,获得积分10
15秒前
哈哈哈哈发布了新的文献求助10
16秒前
请叫我风吹麦浪应助yoon采纳,获得10
16秒前
认真的青柠完成签到,获得积分10
16秒前
bbanshan完成签到,获得积分10
16秒前
卫生纸发布了新的文献求助10
16秒前
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794