异质结
光电流
材料科学
分解水
X射线光电子能谱
载流子
光电子学
费米能级
光催化
化学工程
化学
催化作用
工程类
生物化学
物理
量子力学
电子
作者
Yuli Xiong,Zhang Duo,Xiaoxuan Zhao,Keyi Wang,Peng Yu,Zhenxiang Cheng
标识
DOI:10.1002/cssc.202400515
摘要
The construction of nanostructured heterostructure is a potent strategy for achieving high‐performance photoelectrochemical (PEC) water splitting. Among these, constructing BiVO4‐based heterostructure stands out as a promising method for optimizing light‐harvesting efficiency and reducing severe charge recombination. Herein, we present a novel approach to fabricate a type II heterostructure of core/shell Bi2S3/BiVO4 using electrolytic deposition and successive ionic layer adsorption and reaction (SILAR) methods. We identify the type II heterostructure and the difference in fermi energy using UV‐Vis spectroscopy, X‐ray photoelectron spectroscopy, and PEC measurements. This redistribution of charges due to the fermi energy difference induces an interfacial built‐in electric field from BiVO4 to Bi2S3, reinforcing the photogenerated hole transfer kinetics from BiVO4 to Bi2S3. The Bi2S3/BiVO4 heterostructure exhibits a superior photocurrent (6.0 mA cm−2), enhanced charge separation efficiency (85%), and higher open‐circuit photovoltage (350 mV). Additionally, the heterostructure displays a prolonged average lifetime of charge (1.63 ns), verifying this heterojunction could boost interfacial carriers’ migration via an additional nonradiative quenching pathway. Furthermore, the lower photoluminescence (PL) intensity demonstrates the interfacial built‐in electric field is beneficial for boosting charge migration.
科研通智能强力驱动
Strongly Powered by AbleSci AI