Spinal Cord Injury Identification and Localization Detection Based on MRI Imaging and Deep Learning Technology

脊髓损伤 深度学习 鉴定(生物学) 医学 成像技术 脊髓 人工智能 磁共振成像 放射科 计算机科学 生物 植物 精神科
作者
Ting Shao,Jing Xu,Yaqin Dai
出处
期刊:Traitement Du Signal [International Information and Engineering Technology Association]
卷期号:41 (2): 693-703
标识
DOI:10.18280/ts.410212
摘要

This study explores the feasibility and application value of the Faster R-CNN algorithm, a deep learning technology, in identifying signal abnormalities and locating injury areas in MRI images of the spinal cord.Method: Initially, Magnetic Resonance Imaging (MRI) images from 1,000 spinal cord injury (SCI) patients and 500 healthy individuals collected over five years were included in the dataset, divided into signal change and normal groups.The dataset was then preprocessed, and the lesion areas were annotated by experienced spine surgeons for later experimental verification of the algorithm's effectiveness; no markings were necessary for the normal group.Subsequently, the Faster R-CNN algorithm, combined with the VGG-16 and Resnet50 network models from the convolutional neural network (CNN) framework, was used for recognizing and locating SCI in MRI images.Finally, a horizontal comparison of different network structure models was conducted, with the model's mean Average Precision (mAP) and visual results serving as evaluation metrics to determine the best network structure model.The deep learning model constructed in this paper can use real-time medical imaging of SCI patients as input for the spinal cord analysis neural network.The trained network can automatically identify and label the location of SCI, achieving a model mAP of 88.6% and an image test speed of 0.22s per image.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
han发布了新的文献求助10
刚刚
orixero应助栗子栗栗子采纳,获得10
刚刚
漫漫完成签到,获得积分10
1秒前
隐形曼青应助奥利安费采纳,获得10
1秒前
寇旭晗完成签到 ,获得积分10
1秒前
3秒前
4秒前
希望天下0贩的0应助ZH采纳,获得10
6秒前
烟花应助稳重的不正采纳,获得10
6秒前
高歌发布了新的文献求助10
6秒前
9秒前
Duffy完成签到,获得积分10
9秒前
passerby完成签到,获得积分10
10秒前
11秒前
12秒前
12秒前
大个应助qin采纳,获得10
12秒前
奥利安费发布了新的文献求助10
15秒前
15秒前
千跃应助没事哒采纳,获得10
16秒前
dnnnsns发布了新的文献求助30
17秒前
17秒前
18秒前
BioRick发布了新的文献求助10
18秒前
充电宝应助Ting采纳,获得10
19秒前
19秒前
超帅思天发布了新的文献求助10
22秒前
BioRick完成签到,获得积分10
22秒前
牧长一完成签到 ,获得积分0
24秒前
ltt发布了新的文献求助10
24秒前
26秒前
SCI方便面完成签到,获得积分10
30秒前
怕黑的静蕾应助雪山飞龙采纳,获得10
30秒前
30秒前
xiaoguangtou完成签到,获得积分10
31秒前
32秒前
小马甲应助迷人的芹菜采纳,获得10
32秒前
大个应助口外彭于晏采纳,获得10
33秒前
Espoir完成签到,获得积分10
33秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966796
求助须知:如何正确求助?哪些是违规求助? 3512322
关于积分的说明 11162614
捐赠科研通 3247199
什么是DOI,文献DOI怎么找? 1793730
邀请新用户注册赠送积分活动 874602
科研通“疑难数据库(出版商)”最低求助积分说明 804432