Resistance spot welding defect detection based on vectorized dynamic resistance signal and LightGBM classifier

点焊 焊接 分类器(UML) 人工智能 计算机科学 模式识别(心理学) 材料科学 复合材料
作者
Zigui Lv,Xiangdong Gao,Hong Xiao,Pengyu Gao
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (8): 086113-086113 被引量:3
标识
DOI:10.1088/1361-6501/ad457b
摘要

Abstract The problem of real-time detection of welding defects is a difficult problem in resistance spot welding. It is found that the dynamic resistance has a strong connection with the growth of the nugget. The dynamic resistance signals with welding defects are significantly different from those of normal welding, and the dynamic resistance signals between different welding defects show different characteristics, and the dynamic resistance signals of the same kind of welding defects may also differ from each other. The most common practice today to realize the detection of resistive defects is by extracting the time-domain features of the signal waveforms. However, this approach is highly subjective, so this article proposes a double-size mesh division method to process the dynamic resistance signal. Experiments prove that the method can retain the characteristics of the signal curve well, and it is also improves the training speed and accuracy compared with the mesh division method. Finally, the processed signals are classified using the light gradient boosting machine classifier with an accuracy of 98.55%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
最优解完成签到,获得积分10
刚刚
海棠听风完成签到,获得积分10
刚刚
WUYANG完成签到,获得积分10
1秒前
情怀应助javalin采纳,获得10
1秒前
2秒前
2秒前
思有完成签到 ,获得积分10
2秒前
德德发布了新的文献求助10
2秒前
无花果应助dpp采纳,获得10
2秒前
NexusExplorer应助YYY采纳,获得10
2秒前
3秒前
科研通AI2S应助心房子采纳,获得10
3秒前
jiao完成签到,获得积分10
3秒前
4秒前
4秒前
搜集达人应助哈哈大笑采纳,获得10
4秒前
Mr.Reese完成签到,获得积分10
4秒前
4秒前
孤独的珩完成签到,获得积分10
5秒前
Miracle发布了新的文献求助10
5秒前
zkwww完成签到 ,获得积分10
5秒前
汉堡包应助李来仪采纳,获得10
6秒前
6秒前
饱满以松完成签到 ,获得积分10
6秒前
开心瓜瓜瓜完成签到,获得积分10
6秒前
8秒前
8秒前
9秒前
墨染发布了新的文献求助10
9秒前
0000完成签到,获得积分20
10秒前
10秒前
冰激凌UP发布了新的文献求助10
11秒前
机智念芹完成签到 ,获得积分10
11秒前
11秒前
12秒前
Raymond应助su采纳,获得10
12秒前
13秒前
朴素小鸟胃完成签到,获得积分10
13秒前
诗梦完成签到,获得积分10
13秒前
称心的紫萱完成签到,获得积分10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794