Multi-sensor data fusion-enabled lightweight convolutional double regularization contrast transformer for aerospace bearing small samples fault diagnosis

融合 正规化(语言学) 传感器融合 航空航天 方位(导航) 变压器 模式识别(心理学) 计算机科学 人工智能 工程类 电气工程 航空航天工程 语言学 哲学 电压
作者
Yutong Dong,Hongkai Jiang,Mingzhe Mu,Xin Wang
出处
期刊:Advanced Engineering Informatics [Elsevier]
卷期号:62: 102573-102573 被引量:7
标识
DOI:10.1016/j.aei.2024.102573
摘要

Aiming at the problems of low information utilization and lack of feature mining capability in multi-sensor fusion networks, this study presents a multi-sensor data fusion-enabled lightweight convolutional double regularization contrast transformer for aerospace bearing small samples fault diagnosis. Firstly, a metric termed integrated cliff entropy is devised to assign weights to vibration signals from diverse sensor channels. It aims to enhance the cyclic impulse characteristics within the fused signals, thereby facilitating more precise fault identification. Secondly, a lightweight Diwaveformer architecture is constructed as the backbone of contrast learning. It enables the global and local features of faulty signals to be comprehensively extracted with less computational effort. Finally, a double contrast loss is constructed to optimize the distribution of intra-class and inter-class features to improve the fault identification ability of the network with small samples. Additionally, a discard regularization method is designed to remove the projection head during the contrast learning process, further advancing the model lightweight. Our method achieved accuracies of 95.54% and 92.56% on two aerospace bearing datasets with extremely sparse training samples, which proved its superior performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI6应助七七采纳,获得10
1秒前
1秒前
2秒前
Owen应助蘸糖冰美式采纳,获得10
2秒前
鲤鱼凛发布了新的文献求助10
2秒前
5秒前
AslenK完成签到,获得积分10
5秒前
酷波er应助流萤采纳,获得10
7秒前
Lucas应助天才包采纳,获得10
7秒前
小马甲应助鲤鱼凛采纳,获得10
7秒前
8秒前
123321发布了新的文献求助10
9秒前
9秒前
9秒前
英姑应助chen131810采纳,获得10
9秒前
hhan发布了新的文献求助10
9秒前
13秒前
13秒前
14秒前
14秒前
WN发布了新的文献求助10
15秒前
15秒前
嘿嘿发布了新的文献求助10
15秒前
17秒前
sss发布了新的文献求助10
19秒前
科研通AI6应助FBL采纳,获得10
20秒前
20秒前
赵保钢完成签到,获得积分10
20秒前
鲤鱼凛完成签到,获得积分10
21秒前
陈篱发布了新的文献求助10
21秒前
天才包发布了新的文献求助10
22秒前
852应助123采纳,获得10
23秒前
鲤鱼凛发布了新的文献求助10
23秒前
平常破茧完成签到 ,获得积分10
26秒前
27秒前
科研通AI6应助erismax采纳,获得10
27秒前
Hanoi347应助mashibeo采纳,获得30
28秒前
量子星尘发布了新的文献求助10
29秒前
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536933
求助须知:如何正确求助?哪些是违规求助? 4624592
关于积分的说明 14592446
捐赠科研通 4565023
什么是DOI,文献DOI怎么找? 2502125
邀请新用户注册赠送积分活动 1480875
关于科研通互助平台的介绍 1452098