Prediction-Driven Surge Planning with Application to Emergency Department Nurse Staffing

人员配备 急诊科 浪涌容量 浪涌 运营管理 业务 劳动力管理 医疗急救 运筹学 护理部 计算机科学 劳动力 医学 工程类 经济 2019年冠状病毒病(COVID-19) 传染病(医学专业) 病理 疾病 电气工程 经济增长
作者
Yue Hu,Carri W. Chan,Jing Dong
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
被引量:7
标识
DOI:10.1287/mnsc.2021.02781
摘要

Determining emergency department (ED) nurse staffing decisions to balance quality of service and staffing costs can be extremely challenging, especially when there is a high level of uncertainty in patient demand. Increasing data availability and continuing advancements in predictive analytics provide an opportunity to mitigate demand uncertainty by using demand forecasts. In this work, we study a two-stage prediction-driven staffing framework where the prediction models are integrated with the base (made weeks in advance) and surge (made nearly real-time) nurse staffing decisions in the ED. We quantify the benefit of having the ability to use the more expensive surge staffing and identify the importance of balancing demand uncertainty versus system stochasticity. We also propose a near-optimal two-stage staffing policy that is straightforward to interpret and implement. Last, we develop a unified framework that combines parameter estimation, real-time demand forecasts, and nurse staffing in the ED. High-fidelity simulation experiments for the ED demonstrate that the proposed framework has the potential to reduce annual staffing costs by 10%–16% ($2 M–$3 M) while guaranteeing timely access to care. This paper was accepted by David Simchi-Levi, healthcare management. Funding: J. Dong was partially supported by the Division of Civil, Mechanical and Manufacturing Innovation [Grant CMMI-1944209]. Supplemental Material: The data files are available at https://doi.org/10.1287/mnsc.2021.02781 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
newnew完成签到,获得积分10
3秒前
5秒前
英姑应助龚俊采纳,获得10
5秒前
6秒前
烟花应助cenghao采纳,获得10
6秒前
大个应助zxl采纳,获得10
7秒前
meimei完成签到,获得积分10
8秒前
新嗨完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
yimi完成签到,获得积分10
8秒前
9秒前
10秒前
小崔发布了新的文献求助10
10秒前
研友_VZG7GZ应助wqkkk采纳,获得10
10秒前
guandada发布了新的文献求助10
10秒前
10秒前
10秒前
没霉梅梅发布了新的文献求助10
11秒前
11秒前
bkagyin应助任罗川采纳,获得10
11秒前
新嗨发布了新的文献求助10
12秒前
向浩发布了新的文献求助10
12秒前
WhiteCaramel完成签到 ,获得积分10
13秒前
科目三应助Alan采纳,获得30
14秒前
14秒前
yang发布了新的文献求助10
14秒前
15秒前
15秒前
你好发布了新的文献求助10
16秒前
16秒前
16秒前
16秒前
17秒前
17秒前
传奇3应助热情嘉懿采纳,获得10
18秒前
20秒前
小H同学发布了新的文献求助10
20秒前
Jasper发布了新的文献求助10
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5632327
求助须知:如何正确求助?哪些是违规求助? 4726681
关于积分的说明 14981762
捐赠科研通 4790262
什么是DOI,文献DOI怎么找? 2558238
邀请新用户注册赠送积分活动 1518646
关于科研通互助平台的介绍 1479089