The effect of anthropometric parameters on the seat transmissibility during whole-body vibration: a hybrid modeling approach based on artificial neural networks and principal component analysis

传递率(结构动力学) 主成分分析 全身振动 人工神经网络 组分(热力学) 振动 结构工程 计算机科学 工程类 生物系统 人工智能 隔振 声学 物理 生物 热力学
作者
Xiaolu Zhang,SEN LIN,X.S. Wang,Yang Miao
出处
期刊:Journal of Mechanics in Medicine and Biology
标识
DOI:10.1142/s0219519424500246
摘要

The modeling of the seat transmissibility is necessary to advance the understanding of the dynamic interactions between compliant seats and occupants. Within this investigation, an optimized artificial neural network (ANN) model was employed to clarify contributions associated with anthropometric parameters to the seat transmissibility. Anthropometric parameters underwent dimensionality reduction through the principal component analysis, and resultant principal components served as input features for the ANN model. Additionally, the ANN structure’s weights and biases values were adjusted using the genetic algorithm (GA), resulting in a PCA-GA-ANN model for the prediction of seat transmissibilities. The results indicated root mean square error (RMSE) values for predicting vertical in-line and horizontal cross-axis transmissibilities from the developed model were 0.061 and 0.055, respectively, demonstrating superior effectiveness in the prediction error and trends when compared with both the ANN and GA-ANN models. The seat transmissibility predicted from the PCA-GA-ANN model exhibited resonance behaviors similar to that observed in the whole-body vibration test. The sensitivity analysis showed that the subject’s age was the most predominant anthropometric parameter for the prediction, followed by gender and body mass index. The ANN model optimized with principal component analysis (PCA) and GA effectively eliminates the redundant information of anthropometric parameters, enhancing the generalization of the seat transmissibility prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
maox1aoxin应助水水水采纳,获得30
1秒前
科研通AI5应助怕黑的钥匙采纳,获得10
1秒前
落寞觅山发布了新的文献求助10
1秒前
wyq完成签到 ,获得积分10
1秒前
小鱼完成签到,获得积分10
1秒前
梅莉达发布了新的文献求助10
2秒前
香蕉觅云应助jin采纳,获得10
2秒前
2秒前
2秒前
3秒前
3秒前
科研通AI5应助高兴的碧琴采纳,获得10
4秒前
丘比特应助Landau采纳,获得10
4秒前
黑暗系发布了新的文献求助10
5秒前
Bonjour发布了新的文献求助10
5秒前
小鱼发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
Katherine完成签到,获得积分10
6秒前
科研通AI2S应助guoduan采纳,获得10
6秒前
6秒前
华仔应助梅莉达采纳,获得10
6秒前
香菜完成签到,获得积分10
6秒前
浮云发布了新的文献求助10
7秒前
碧蓝妙海发布了新的文献求助10
7秒前
7秒前
7秒前
Butterfly发布了新的文献求助10
8秒前
汉堡包应助Meow采纳,获得10
8秒前
湖医小朱发布了新的文献求助10
8秒前
9秒前
9秒前
精灵夜雨发布了新的文献求助200
9秒前
Xie发布了新的文献求助10
9秒前
10秒前
贺万万发布了新的文献求助10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3543673
求助须知:如何正确求助?哪些是违规求助? 3121002
关于积分的说明 9345096
捐赠科研通 2819038
什么是DOI,文献DOI怎么找? 1549916
邀请新用户注册赠送积分活动 722318
科研通“疑难数据库(出版商)”最低求助积分说明 713137