清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Wheat FHB resistance assessment using hyperspectral feature band image fusion and deep learning

高光谱成像 人工智能 特征(语言学) 抗性(生态学) 模式识别(心理学) 融合 图像(数学) 计算机科学 环境科学 遥感 地质学 农学 生物 语言学 哲学
作者
Kun Liang,Ren Zhizhou,Song Jinpeng,Yuan Rui,Qun Zhang
出处
期刊:International Journal of Agricultural and Biological Engineering [Chinese Society of Agricultural Engineering]
卷期号:17 (2): 240-249 被引量:2
标识
DOI:10.25165/j.ijabe.20241702.8269
摘要

The breeding and selection of resistant varieties is an effective way to minimize wheat Fusarium head blight (FHB) hazards, so it is important to identify and evaluate resistant varieties. The traditional resistance phenotype identification is still largely dependent on time-consuming manual methods. In this paper, the method for evaluating FHB resistance in wheat ears was optimized based on the fusion feature wavelength images of the hyperspectral imaging system and the Faster R-CNN algorithm. The spectral data from 400-1000 nm were preprocessed by the multiple scattering correction (MSC) algorithm. Three feature wavelengths (553 nm, 682 nm and 714 nm) were selected by analyzing the X-loading weights (XLW) according to the absolute value of the peaks and troughs in different principal component (PC) load coefficient curves. Then, the different fusion methods of the three feature wavelengths were explored with different weight coefficients. Faster R-CNN was trained on the fusion and RGB datasets with VGG16, AlexNet, ZFNet, and ResNet-50 networks separately. Then, the other detection models SSD, YOLOv5, YOLOv7, CenterNet, and RetinaNet were used to compare with the Faster R-CNN model. As a result, the Faster R-CNN with VGG16 was best with the mAP (mean Average Precision) ranged from 97.7% to 98.8%. The model showed the best performance for the Fusion Image-1 dataset. Moreover, the Faster R-CNN model with VGG16 achieved an average detection accuracy of 99.00%, which was 23.89%, 1.21%, 0.75%, 0.62%, and 8.46% higher than SSD, YOLOv5, YOLOv7, CenterNet, and RetinaNet models. Therefore, it was demonstrated that the Faster R-CNN model based on the hyperspectral feature image fusion dataset proposed in this paper was feasible for rapid evaluation of wheat FHB resistance. This study provided an important detection method for ensuring wheat food security. Key words: Fusariumhead blight, resistance evaluation, hyperspectral feature band image fusion, deep learning, Faster R-CNN DOI: 10.25165/j.ijabe.20241702.8269 Citation: Liang K, Ren Z Z, Song J P, Yuan R, Zhang Q. Wheat FHB resistance assessment using hyperspectral feature bandimage fusion and deep learning. Int J Agric & Biol Eng, 2024; 17(2): 240–249.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顺心的猪完成签到 ,获得积分10
15秒前
研友_ndDGVn完成签到 ,获得积分10
16秒前
31秒前
我是幸运大王完成签到,获得积分10
33秒前
38秒前
不安的松完成签到 ,获得积分10
45秒前
56秒前
naczx完成签到,获得积分0
58秒前
1分钟前
荀煜祺发布了新的文献求助10
1分钟前
wumumu发布了新的文献求助10
1分钟前
ling361发布了新的文献求助10
1分钟前
1分钟前
邬代桃发布了新的文献求助10
1分钟前
孙老师完成签到 ,获得积分10
1分钟前
斯文败类应助wumumu采纳,获得10
1分钟前
FL完成签到,获得积分10
1分钟前
ling361完成签到,获得积分10
1分钟前
辛夷完成签到,获得积分10
1分钟前
1分钟前
斯文败类应助yana采纳,获得10
2分钟前
自由从筠完成签到 ,获得积分10
2分钟前
糊涂的青烟完成签到 ,获得积分10
2分钟前
无语的冰淇淋完成签到 ,获得积分10
2分钟前
江三村完成签到 ,获得积分10
2分钟前
huanghe完成签到,获得积分10
2分钟前
嗯嗯嗯哦哦哦完成签到 ,获得积分10
2分钟前
2分钟前
润润轩轩完成签到 ,获得积分10
2分钟前
慕青应助volvoamg采纳,获得10
3分钟前
Skywings完成签到,获得积分10
3分钟前
LeoBigman完成签到 ,获得积分10
3分钟前
斯文败类应助volvoamg采纳,获得10
3分钟前
Akim应助volvoamg采纳,获得10
4分钟前
4分钟前
HR112完成签到 ,获得积分10
4分钟前
旅程完成签到 ,获得积分10
5分钟前
www完成签到 ,获得积分10
5分钟前
lingling完成签到 ,获得积分10
5分钟前
bzdjsmw完成签到 ,获得积分10
5分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Munson, Young, and Okiishi’s Fundamentals of Fluid Mechanics 9 edition problem solution manual (metric) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3749970
求助须知:如何正确求助?哪些是违规求助? 3293224
关于积分的说明 10080128
捐赠科研通 3008612
什么是DOI,文献DOI怎么找? 1652307
邀请新用户注册赠送积分活动 787340
科研通“疑难数据库(出版商)”最低求助积分说明 752096