CIMFormer: A Systolic CIM-Array-Based Transformer Accelerator With Token-Pruning-Aware Attention Reformulating and Principal Possibility Gathering

安全性令牌 变压器 校长(计算机安全) 计算机科学 收缩阵列 嵌入式系统 工程类 计算机安全 电气工程 电压 超大规模集成
作者
Ruiqi Guo,X.L. Chen,Lei Wang,Yang Wang,Hao Sun,Jingchuan Wei,Huiming Han,Leibo Liu,Shaojun Wei,Yang Hu,Shouyi Yin
出处
期刊:IEEE Journal of Solid-state Circuits [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13
标识
DOI:10.1109/jssc.2024.3402174
摘要

Transformer models have achieved impressive performance in various artificial intelligence (AI) applications. However, the high cost of computation and memory footprint make its inference inefficient. Although digital compute-in-memory (CIM) is a promising hardware architecture with high accuracy, Transformer's attention mechanism raises three challenges in the access and computation of CIM: 1) the attention computation involving Query and Key results in massive data movement and under-utilization in CIM macros; 2) the attention computation involving Possibility and Value exhibits plenty of dynamic bit-level sparsity, resulting in redundant bit-serial CIM operations; and 3) the restricted data reload bandwidth in CIM macros results in a significant decrease in performance for large Transformer models. To address these challenges, we design a CIM accelerator called CIM Transformer (CIMFormer) with three corresponding features. First, the token-pruning-aware attention reformulation (TPAR) is a technique that adjusts attention computations according to the token-pruning ratio. This reformulation reduces the real-time access to and under-utilization of CIM macros. Second, the principal possibility gather-scatter scheduler (PPGSS) gathers the possibilities with greater effective bit-width as concurrent inputs to CIM macros, enhancing the efficiency of bit-serial CIM operations. Third, the systolic X $\mid$ W-CIM macro array efficiently handles the execution of large Transformer models that exceed the storage capacity of the on-chip CIM macros. Fabricated in a 28-nm technology, CIMFormer achieves a peak energy efficiency of 15.71 TOPS/W, with an over 1.46 $\times$ improvement compared with the state-of-the-art Transformer accelerator at an equivalent situation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沈征完成签到,获得积分20
1秒前
蓝白完成签到,获得积分10
1秒前
Desperado发布了新的文献求助10
1秒前
pups完成签到,获得积分10
1秒前
1秒前
马夋发布了新的文献求助10
2秒前
2秒前
张雨露完成签到 ,获得积分10
2秒前
科研通AI5应助谨慎建辉采纳,获得10
3秒前
zjq发布了新的文献求助10
4秒前
大个应助木今采纳,获得10
4秒前
Owen应助曦曦采纳,获得10
5秒前
5秒前
5秒前
5秒前
12131完成签到,获得积分20
6秒前
6秒前
6秒前
蓝色斑马发布了新的文献求助10
7秒前
烟花完成签到,获得积分10
7秒前
大胆傲芙发布了新的文献求助10
8秒前
马夋完成签到,获得积分10
8秒前
科研通AI2S应助健忘千雁采纳,获得10
8秒前
Jiang完成签到,获得积分10
8秒前
pups发布了新的文献求助80
8秒前
Ww发布了新的文献求助10
9秒前
烂漫的煎饼完成签到 ,获得积分10
9秒前
chixueqi完成签到,获得积分10
9秒前
10秒前
10秒前
10秒前
10秒前
鸭子发布了新的文献求助10
11秒前
11秒前
11秒前
11秒前
majf发布了新的文献求助10
11秒前
12秒前
小蘑菇应助咕嘟采纳,获得10
12秒前
12秒前
高分求助中
Incubation and Hatchery Performance, The Devil is in the Details 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5204680
求助须知:如何正确求助?哪些是违规求助? 4383701
关于积分的说明 13650154
捐赠科研通 4241580
什么是DOI,文献DOI怎么找? 2326956
邀请新用户注册赠送积分活动 1324605
关于科研通互助平台的介绍 1276907