CIMFormer: A Systolic CIM-Array-Based Transformer Accelerator With Token-Pruning-Aware Attention Reformulating and Principal Possibility Gathering

安全性令牌 变压器 校长(计算机安全) 计算机科学 收缩阵列 嵌入式系统 工程类 计算机安全 电气工程 电压 超大规模集成
作者
Ruiqi Guo,X.L. Chen,Lei Wang,Yang Wang,Hao Sun,Jingchuan Wei,Huiming Han,Leibo Liu,Shaojun Wei,Yang Hu,Shouyi Yin
出处
期刊:IEEE Journal of Solid-state Circuits [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13
标识
DOI:10.1109/jssc.2024.3402174
摘要

Transformer models have achieved impressive performance in various artificial intelligence (AI) applications. However, the high cost of computation and memory footprint make its inference inefficient. Although digital compute-in-memory (CIM) is a promising hardware architecture with high accuracy, Transformer's attention mechanism raises three challenges in the access and computation of CIM: 1) the attention computation involving Query and Key results in massive data movement and under-utilization in CIM macros; 2) the attention computation involving Possibility and Value exhibits plenty of dynamic bit-level sparsity, resulting in redundant bit-serial CIM operations; and 3) the restricted data reload bandwidth in CIM macros results in a significant decrease in performance for large Transformer models. To address these challenges, we design a CIM accelerator called CIM Transformer (CIMFormer) with three corresponding features. First, the token-pruning-aware attention reformulation (TPAR) is a technique that adjusts attention computations according to the token-pruning ratio. This reformulation reduces the real-time access to and under-utilization of CIM macros. Second, the principal possibility gather-scatter scheduler (PPGSS) gathers the possibilities with greater effective bit-width as concurrent inputs to CIM macros, enhancing the efficiency of bit-serial CIM operations. Third, the systolic X $\mid$ W-CIM macro array efficiently handles the execution of large Transformer models that exceed the storage capacity of the on-chip CIM macros. Fabricated in a 28-nm technology, CIMFormer achieves a peak energy efficiency of 15.71 TOPS/W, with an over 1.46 $\times$ improvement compared with the state-of-the-art Transformer accelerator at an equivalent situation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
XWY完成签到,获得积分0
1秒前
上善若水呦完成签到,获得积分10
1秒前
只喝白开水完成签到 ,获得积分10
3秒前
负责的流沙完成签到 ,获得积分10
4秒前
6秒前
萧诗双完成签到,获得积分10
7秒前
9秒前
坚强钻石完成签到,获得积分10
11秒前
重要山彤完成签到 ,获得积分10
11秒前
YI_ZHOU_YU关注了科研通微信公众号
12秒前
13秒前
13秒前
14秒前
乔心完成签到 ,获得积分10
15秒前
方赫然应助kytyzx采纳,获得10
15秒前
今后应助kytyzx采纳,获得10
15秒前
zlx完成签到,获得积分10
16秒前
kkz完成签到,获得积分20
17秒前
18秒前
荀连虎发布了新的文献求助10
19秒前
zh完成签到 ,获得积分10
19秒前
爆米花应助乔心采纳,获得10
19秒前
美满的小蘑菇完成签到 ,获得积分10
21秒前
22秒前
22秒前
火星上小土豆完成签到 ,获得积分10
22秒前
24秒前
情怀应助小十二采纳,获得10
26秒前
111驳回了Hello应助
28秒前
28秒前
小悦悦完成签到 ,获得积分10
29秒前
虚幻的冰露完成签到 ,获得积分10
29秒前
小纸人发布了新的文献求助10
30秒前
31秒前
巴乔完成签到,获得积分10
31秒前
YI_ZHOU_YU完成签到,获得积分10
32秒前
Orange应助光亮的思柔采纳,获得10
32秒前
HRBJ完成签到,获得积分10
35秒前
桃子完成签到 ,获得积分10
35秒前
36秒前
高分求助中
Earth System Geophysics 1000
Co-opetition under Endogenous Bargaining Power 666
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Language injustice and social equity in EMI policies in China 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3211276
求助须知:如何正确求助?哪些是违规求助? 2860223
关于积分的说明 8123223
捐赠科研通 2526057
什么是DOI,文献DOI怎么找? 1359763
科研通“疑难数据库(出版商)”最低求助积分说明 643058
邀请新用户注册赠送积分活动 615099