CIMFormer: A Systolic CIM-Array-Based Transformer Accelerator With Token-Pruning-Aware Attention Reformulating and Principal Possibility Gathering

安全性令牌 变压器 校长(计算机安全) 计算机科学 收缩阵列 嵌入式系统 工程类 计算机安全 电气工程 电压 超大规模集成
作者
Ruiqi Guo,X.L. Chen,Lei Wang,Yang Wang,Hao Sun,Jingchuan Wei,Huiming Han,Leibo Liu,Shaojun Wei,Yang Hu,Shouyi Yin
出处
期刊:IEEE Journal of Solid-state Circuits [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13
标识
DOI:10.1109/jssc.2024.3402174
摘要

Transformer models have achieved impressive performance in various artificial intelligence (AI) applications. However, the high cost of computation and memory footprint make its inference inefficient. Although digital compute-in-memory (CIM) is a promising hardware architecture with high accuracy, Transformer's attention mechanism raises three challenges in the access and computation of CIM: 1) the attention computation involving Query and Key results in massive data movement and under-utilization in CIM macros; 2) the attention computation involving Possibility and Value exhibits plenty of dynamic bit-level sparsity, resulting in redundant bit-serial CIM operations; and 3) the restricted data reload bandwidth in CIM macros results in a significant decrease in performance for large Transformer models. To address these challenges, we design a CIM accelerator called CIM Transformer (CIMFormer) with three corresponding features. First, the token-pruning-aware attention reformulation (TPAR) is a technique that adjusts attention computations according to the token-pruning ratio. This reformulation reduces the real-time access to and under-utilization of CIM macros. Second, the principal possibility gather-scatter scheduler (PPGSS) gathers the possibilities with greater effective bit-width as concurrent inputs to CIM macros, enhancing the efficiency of bit-serial CIM operations. Third, the systolic X $\mid$ W-CIM macro array efficiently handles the execution of large Transformer models that exceed the storage capacity of the on-chip CIM macros. Fabricated in a 28-nm technology, CIMFormer achieves a peak energy efficiency of 15.71 TOPS/W, with an over 1.46 $\times$ improvement compared with the state-of-the-art Transformer accelerator at an equivalent situation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李欢发布了新的文献求助10
刚刚
1秒前
1秒前
安东尼发布了新的文献求助10
1秒前
unravel完成签到,获得积分10
2秒前
fsyb完成签到,获得积分10
3秒前
快乐友灵完成签到,获得积分10
3秒前
不安青牛给KKK的求助进行了留言
4秒前
科研通AI6应助调皮汽车采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得30
4秒前
4秒前
李爱国应助科研通管家采纳,获得10
4秒前
JamesPei应助安静的外套采纳,获得10
4秒前
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
SciGPT应助科研通管家采纳,获得10
5秒前
大个应助科研通管家采纳,获得20
5秒前
英俊的铭应助科研通管家采纳,获得30
5秒前
完美世界应助科研通管家采纳,获得10
5秒前
5秒前
浮游应助科研通管家采纳,获得10
5秒前
英俊的铭应助科研通管家采纳,获得10
5秒前
5秒前
丘比特应助科研通管家采纳,获得10
5秒前
香蕉觅云应助科研通管家采纳,获得10
5秒前
小青椒应助科研通管家采纳,获得50
6秒前
酷波er应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
6秒前
6秒前
6秒前
好运来完成签到 ,获得积分20
7秒前
7秒前
8秒前
传奇3应助innocent采纳,获得20
8秒前
huco发布了新的文献求助10
8秒前
8秒前
冰渊悬月发布了新的文献求助10
8秒前
满意绝音发布了新的文献求助10
8秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
TOWARD A HISTORY OF THE PALEOZOIC ASTEROIDEA (ECHINODERMATA) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5121854
求助须知:如何正确求助?哪些是违规求助? 4326848
关于积分的说明 13481145
捐赠科研通 4160801
什么是DOI,文献DOI怎么找? 2280333
邀请新用户注册赠送积分活动 1281986
关于科研通互助平台的介绍 1220996