CIMFormer: A Systolic CIM-Array-Based Transformer Accelerator With Token-Pruning-Aware Attention Reformulating and Principal Possibility Gathering

安全性令牌 变压器 校长(计算机安全) 计算机科学 收缩阵列 嵌入式系统 工程类 计算机安全 电气工程 电压 超大规模集成
作者
Ruiqi Guo,X.L. Chen,Lei Wang,Yang Wang,Hao Sun,Jingchuan Wei,Huiming Han,Leibo Liu,Shaojun Wei,Yang Hu,Shouyi Yin
出处
期刊:IEEE Journal of Solid-state Circuits [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13
标识
DOI:10.1109/jssc.2024.3402174
摘要

Transformer models have achieved impressive performance in various artificial intelligence (AI) applications. However, the high cost of computation and memory footprint make its inference inefficient. Although digital compute-in-memory (CIM) is a promising hardware architecture with high accuracy, Transformer's attention mechanism raises three challenges in the access and computation of CIM: 1) the attention computation involving Query and Key results in massive data movement and under-utilization in CIM macros; 2) the attention computation involving Possibility and Value exhibits plenty of dynamic bit-level sparsity, resulting in redundant bit-serial CIM operations; and 3) the restricted data reload bandwidth in CIM macros results in a significant decrease in performance for large Transformer models. To address these challenges, we design a CIM accelerator called CIM Transformer (CIMFormer) with three corresponding features. First, the token-pruning-aware attention reformulation (TPAR) is a technique that adjusts attention computations according to the token-pruning ratio. This reformulation reduces the real-time access to and under-utilization of CIM macros. Second, the principal possibility gather-scatter scheduler (PPGSS) gathers the possibilities with greater effective bit-width as concurrent inputs to CIM macros, enhancing the efficiency of bit-serial CIM operations. Third, the systolic X $\mid$ W-CIM macro array efficiently handles the execution of large Transformer models that exceed the storage capacity of the on-chip CIM macros. Fabricated in a 28-nm technology, CIMFormer achieves a peak energy efficiency of 15.71 TOPS/W, with an over 1.46 $\times$ improvement compared with the state-of-the-art Transformer accelerator at an equivalent situation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
yaya发布了新的文献求助10
1秒前
田鑫智完成签到,获得积分10
1秒前
2秒前
Sommer完成签到 ,获得积分10
2秒前
Jason发布了新的文献求助10
2秒前
传奇3应助Luobing采纳,获得10
4秒前
4秒前
LMH发布了新的文献求助10
4秒前
伊人不羁发布了新的文献求助10
5秒前
6秒前
6秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
Dr_Zhan完成签到 ,获得积分10
7秒前
小马哥发布了新的文献求助10
7秒前
8秒前
8秒前
iiiyyy发布了新的文献求助10
9秒前
二智娃娃发布了新的文献求助10
9秒前
10秒前
pluto应助cjw采纳,获得10
10秒前
SciGPT应助受伤惋庭采纳,获得10
11秒前
SciGPT应助xiao采纳,获得10
11秒前
11秒前
li发布了新的文献求助10
12秒前
风中凌旋应助IAN采纳,获得10
13秒前
Shirley完成签到,获得积分10
13秒前
liulei_441发布了新的文献求助10
13秒前
13秒前
wsb76完成签到 ,获得积分10
14秒前
14秒前
14秒前
光亮幻巧发布了新的文献求助10
15秒前
15秒前
甘霖发布了新的文献求助20
15秒前
Ava应助郭文钦采纳,获得10
15秒前
16秒前
凶狠的盼柳完成签到,获得积分10
16秒前
Belinda发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Eurocode 7. Geotechnical design - General rules (BS EN 1997-1:2004+A1:2013) 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5578482
求助须知:如何正确求助?哪些是违规求助? 4663316
关于积分的说明 14745953
捐赠科研通 4604100
什么是DOI,文献DOI怎么找? 2526837
邀请新用户注册赠送积分活动 1496440
关于科研通互助平台的介绍 1465718