From Detection to Protection: The Role of Optical Sensors, Robots, and Artificial Intelligence in Modern Plant Disease Management

精准农业 植物病害 自动化 新兴技术 计算机科学 数据科学 风险分析(工程) 农业 系统工程 工程管理 生物技术 工程类 人工智能 生物 业务 机械工程 生态学
作者
Anne‐Katrin Mahlein,Jayme Garcia Arnal Barbedo,Kuo-Szu Chiang,Emerson M. Del Ponte,Clive H. Bock
出处
期刊:Phytopathology [American Phytopathological Society]
卷期号:114 (8): 1733-1741 被引量:7
标识
DOI:10.1094/phyto-01-24-0009-per
摘要

In the past decade, there has been a recognized need for innovative methods to monitor and manage plant diseases, aiming to meet the precision demands of modern agriculture. Over the last 15 years, significant advances in the detection, monitoring, and management of plant diseases have been made, largely propelled by cutting-edge technologies. Recent advances in precision agriculture have been driven by sophisticated tools such as optical sensors, artificial intelligence, microsensor networks, and autonomous driving vehicles. These technologies have enabled the development of novel cropping systems, allowing for targeted management of crops, contrasting with the traditional, homogeneous treatment of large crop areas. The research in this field is usually a highly collaborative and interdisciplinary endeavor. It brings together experts from diverse fields such as plant pathology, computer science, statistics, engineering, and agronomy to forge comprehensive solutions. Despite the progress, translating the advancements in the precision of decision-making or automation into agricultural practice remains a challenge. The knowledge transfer to agricultural practice and extension has been particularly challenging. Enhancing the accuracy and timeliness of disease detection continues to be a priority, with data-driven artificial intelligence systems poised to play a pivotal role. This perspective article addresses critical questions and challenges faced in the implementation of digital technologies for plant disease management. It underscores the urgency of integrating innovative technological advances with traditional integrated pest management. It highlights unresolved issues regarding the establishment of control thresholds for site-specific treatments and the necessary alignment of digital technology use with regulatory frameworks. Importantly, the paper calls for intensified research efforts, widespread knowledge dissemination, and education to optimize the application of digital tools for plant disease management, recognizing the intersection of technology's potential with its current practical limitations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zgd发布了新的文献求助10
1秒前
zho发布了新的文献求助10
1秒前
3秒前
3秒前
3秒前
外向白开水完成签到 ,获得积分10
4秒前
4秒前
微垣完成签到,获得积分10
4秒前
5秒前
华仔应助达达利亚采纳,获得10
7秒前
大白完成签到 ,获得积分10
7秒前
7秒前
料峭声花发布了新的文献求助10
8秒前
9秒前
南风似潇应助pino采纳,获得10
9秒前
努力中的小鹿完成签到,获得积分10
10秒前
SYLH应助微垣采纳,获得10
10秒前
Timothy发布了新的文献求助10
10秒前
kiki完成签到,获得积分10
11秒前
路过蜻蜓完成签到,获得积分10
12秒前
13秒前
DaSheng完成签到,获得积分10
14秒前
14秒前
kiki发布了新的文献求助10
15秒前
15秒前
科研通AI5应助4645采纳,获得10
16秒前
典雅问寒发布了新的文献求助10
17秒前
达达利亚完成签到,获得积分10
19秒前
琪琪子发布了新的文献求助10
19秒前
20秒前
20秒前
zero完成签到 ,获得积分10
21秒前
reuslee发布了新的文献求助10
21秒前
22秒前
Wayne66完成签到,获得积分10
22秒前
tablerjin关注了科研通微信公众号
22秒前
张津铭完成签到 ,获得积分10
23秒前
Logan5949完成签到 ,获得积分10
23秒前
坚强亦丝应助科研通管家采纳,获得10
23秒前
领导范儿应助科研通管家采纳,获得10
23秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 500
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3734464
求助须知:如何正确求助?哪些是违规求助? 3278459
关于积分的说明 10009515
捐赠科研通 2995045
什么是DOI,文献DOI怎么找? 1643172
邀请新用户注册赠送积分活动 780986
科研通“疑难数据库(出版商)”最低求助积分说明 749183