A multi-agent reinforcement learning model for inventory transshipments under supply chain disruption

强化学习 计算机科学 供应链 转运(资讯保安) 弹性(材料科学) 信息共享 多智能体系统 基于Agent的模型 供应链管理 运筹学 过程管理 风险分析(工程) 业务 人工智能 计算机安全 物理 工程类 万维网 营销 热力学
作者
Byeongmok Kim,Jong Gwang Kim,Seokcheon Lee
出处
期刊:IISE transactions [Informa]
卷期号:56 (7): 715-728 被引量:12
标识
DOI:10.1080/24725854.2023.2217248
摘要

AbstractAbstractThe COVID-19 pandemic has significantly disrupted global Supply Chains (SCs), emphasizing the importance of SC resilience, which refers to the ability of SCs to return to their original or more desirable state following disruptions. This study focuses on collaboration, a key component of SC resilience, and proposes a novel collaborative structure that incorporates a fictitious agent to manage inventory transshipment decisions between retailers in a centralized manner while maintaining the retailers' autonomy in ordering. The proposed collaborative structure offers the following advantages from SC resilience and operational perspectives: (i) it facilitates decision synchronization for enhanced collaboration among retailers, and (ii) it allows retailers to collaborate without the need for information sharing, addressing the potential issue of information sharing reluctance. Additionally, this study employs non-stationary probability to capture the deeply uncertain nature of the ripple effect and the highly volatile customer demand caused by the pandemic. A new Reinforcement Learning (RL) algorithm is developed to handle non-stationary environments and to implement the proposed collaborative structure. Experimental results demonstrate that the proposed collaborative structure using the new RL algorithm achieves superior SC resilience compared with centralized inventory management systems with transshipment and decentralized inventory management systems without transshipment using traditional RL algorithms.Keywords: Pandemicsupply chainripple effectdeep uncertaintylong-lasting crisisresiliencecollaborationtransshipmentmulti-agent reinforcement learning Data availability statementThe data that support the findings of this study can be generated by using a code openly available in GitHub at https://github.com/Byeongmok/multiagentRL (Kim, 2023).Additional informationNotes on contributorsByeongmok KimByeongmok Kim is currently pursuing his PhD in the School of Industrial Engineering at Purdue University (West Lafayette, IN, USA). He earned his BS degree in Industrial Engineering from Hongik University (Seoul, South Korea) and his M.S. degree in Industrial and Management Engineering from POSTECH (Pohang, South Korea). Prior to entering Purdue University, he worked as a research engineer at LG Electronics and Hyundai Steel. His research interests encompass the application of operations research in manufacturing, logistics, supply chain management, and autonomous robotic delivery.Jong Gwang KimJong Gwang Kim is a PhD student in the School of Industrial Engineering at Purdue University. He received his Master's degree in Applied Mathematics from Columbia University and Bachelor's degrees in Business Administration and Economics from Yonsei University (Korea). His research focuses on the theory and computational aspects of algorithms for large-scale constrained optimization, with applications in game theory, operations research, and machine learning.Seokcheon LeeSeokcheon Lee received his BS and MS degrees in Industrial Engineering from Seoul National University (Seoul, South Korea) in 1991 and 1993, respectively, and his PhD degree in Industrial Engineering from Pennsylvania State University (PA, USA) in 2005. He is currently a professor in the School of Industrial Engineering at Purdue University (West Lafayette, IN, USA). His current research interests include optimization techniques from multidisciplinary perspectives and distributed control for logistics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
困屁鱼完成签到 ,获得积分10
1秒前
Justtry完成签到,获得积分10
3秒前
tuanheqi应助宇文雨文采纳,获得200
4秒前
chem001完成签到,获得积分10
4秒前
yanmh完成签到,获得积分10
12秒前
Aurora完成签到 ,获得积分10
16秒前
Gary完成签到 ,获得积分10
19秒前
潇潇完成签到 ,获得积分10
22秒前
believe完成签到,获得积分10
22秒前
wenhao完成签到,获得积分10
27秒前
活泼的寒安完成签到 ,获得积分10
27秒前
四叶草完成签到 ,获得积分10
29秒前
yuyiiou完成签到 ,获得积分10
32秒前
李思雨完成签到 ,获得积分10
38秒前
momo应助科研通管家采纳,获得10
38秒前
科研通AI2S应助科研通管家采纳,获得10
38秒前
正己化人应助科研通管家采纳,获得10
38秒前
一路硕博应助科研通管家采纳,获得10
38秒前
浮游应助科研通管家采纳,获得10
38秒前
不倦应助科研通管家采纳,获得10
38秒前
正己化人应助科研通管家采纳,获得10
38秒前
浮游应助科研通管家采纳,获得10
38秒前
Greg应助科研通管家采纳,获得10
38秒前
英俊的铭应助科研通管家采纳,获得150
38秒前
一路硕博应助科研通管家采纳,获得10
38秒前
正己化人应助科研通管家采纳,获得10
38秒前
xxquinuan应助科研通管家采纳,获得10
38秒前
Greg应助科研通管家采纳,获得10
39秒前
39秒前
风信子完成签到,获得积分10
41秒前
海林完成签到 ,获得积分10
42秒前
肥而不腻的羚羊完成签到,获得积分10
45秒前
0x3f发布了新的文献求助10
46秒前
美满的小蘑菇完成签到 ,获得积分10
50秒前
宁霸完成签到,获得积分10
51秒前
六一儿童节完成签到 ,获得积分0
55秒前
领导范儿应助鲤鱼元槐采纳,获得10
55秒前
清爽的人龙完成签到 ,获得积分10
57秒前
妮可罗宾完成签到 ,获得积分10
57秒前
邢邢完成签到,获得积分10
57秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1541
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5498623
求助须知:如何正确求助?哪些是违规求助? 4595798
关于积分的说明 14449800
捐赠科研通 4528763
什么是DOI,文献DOI怎么找? 2481719
邀请新用户注册赠送积分活动 1465732
关于科研通互助平台的介绍 1438561