清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A multi-agent reinforcement learning model for inventory transshipments under supply chain disruption

强化学习 计算机科学 供应链 转运(资讯保安) 弹性(材料科学) 信息共享 多智能体系统 基于Agent的模型 供应链管理 运筹学 过程管理 风险分析(工程) 业务 人工智能 计算机安全 物理 工程类 万维网 营销 热力学
作者
Byeongmok Kim,Jong Gwang Kim,Seokcheon Lee
出处
期刊:IISE transactions [Informa]
卷期号:56 (7): 715-728 被引量:12
标识
DOI:10.1080/24725854.2023.2217248
摘要

AbstractAbstractThe COVID-19 pandemic has significantly disrupted global Supply Chains (SCs), emphasizing the importance of SC resilience, which refers to the ability of SCs to return to their original or more desirable state following disruptions. This study focuses on collaboration, a key component of SC resilience, and proposes a novel collaborative structure that incorporates a fictitious agent to manage inventory transshipment decisions between retailers in a centralized manner while maintaining the retailers' autonomy in ordering. The proposed collaborative structure offers the following advantages from SC resilience and operational perspectives: (i) it facilitates decision synchronization for enhanced collaboration among retailers, and (ii) it allows retailers to collaborate without the need for information sharing, addressing the potential issue of information sharing reluctance. Additionally, this study employs non-stationary probability to capture the deeply uncertain nature of the ripple effect and the highly volatile customer demand caused by the pandemic. A new Reinforcement Learning (RL) algorithm is developed to handle non-stationary environments and to implement the proposed collaborative structure. Experimental results demonstrate that the proposed collaborative structure using the new RL algorithm achieves superior SC resilience compared with centralized inventory management systems with transshipment and decentralized inventory management systems without transshipment using traditional RL algorithms.Keywords: Pandemicsupply chainripple effectdeep uncertaintylong-lasting crisisresiliencecollaborationtransshipmentmulti-agent reinforcement learning Data availability statementThe data that support the findings of this study can be generated by using a code openly available in GitHub at https://github.com/Byeongmok/multiagentRL (Kim, 2023).Additional informationNotes on contributorsByeongmok KimByeongmok Kim is currently pursuing his PhD in the School of Industrial Engineering at Purdue University (West Lafayette, IN, USA). He earned his BS degree in Industrial Engineering from Hongik University (Seoul, South Korea) and his M.S. degree in Industrial and Management Engineering from POSTECH (Pohang, South Korea). Prior to entering Purdue University, he worked as a research engineer at LG Electronics and Hyundai Steel. His research interests encompass the application of operations research in manufacturing, logistics, supply chain management, and autonomous robotic delivery.Jong Gwang KimJong Gwang Kim is a PhD student in the School of Industrial Engineering at Purdue University. He received his Master's degree in Applied Mathematics from Columbia University and Bachelor's degrees in Business Administration and Economics from Yonsei University (Korea). His research focuses on the theory and computational aspects of algorithms for large-scale constrained optimization, with applications in game theory, operations research, and machine learning.Seokcheon LeeSeokcheon Lee received his BS and MS degrees in Industrial Engineering from Seoul National University (Seoul, South Korea) in 1991 and 1993, respectively, and his PhD degree in Industrial Engineering from Pennsylvania State University (PA, USA) in 2005. He is currently a professor in the School of Industrial Engineering at Purdue University (West Lafayette, IN, USA). His current research interests include optimization techniques from multidisciplinary perspectives and distributed control for logistics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浚稚完成签到 ,获得积分10
1秒前
明亮不弱完成签到 ,获得积分10
13秒前
科研通AI2S应助雪山飞龙采纳,获得10
13秒前
馨妈完成签到 ,获得积分10
19秒前
pucca完成签到 ,获得积分10
23秒前
33秒前
xirang2发布了新的文献求助10
37秒前
LiangRen完成签到 ,获得积分10
43秒前
44秒前
火星上惜天完成签到 ,获得积分10
45秒前
yy完成签到 ,获得积分10
50秒前
qinghe完成签到 ,获得积分10
1分钟前
种下梧桐树完成签到 ,获得积分10
1分钟前
帆帆帆完成签到 ,获得积分20
1分钟前
善学以致用应助超帅的萤采纳,获得10
1分钟前
1分钟前
1分钟前
超帅的萤发布了新的文献求助10
1分钟前
安鹏应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
安鹏应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
2分钟前
yellowonion完成签到 ,获得积分10
2分钟前
lyw发布了新的文献求助30
2分钟前
2分钟前
Oliver完成签到 ,获得积分10
2分钟前
如意2023完成签到 ,获得积分10
2分钟前
拉长的秋白完成签到 ,获得积分10
2分钟前
pengchy完成签到,获得积分10
2分钟前
米奇妙妙屋完成签到,获得积分10
2分钟前
2分钟前
Wenfeifei完成签到,获得积分10
2分钟前
毛毛弟完成签到 ,获得积分10
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5764758
求助须知:如何正确求助?哪些是违规求助? 5554914
关于积分的说明 15406592
捐赠科研通 4899732
什么是DOI,文献DOI怎么找? 2635956
邀请新用户注册赠送积分活动 1584135
关于科研通互助平台的介绍 1539403