A multi-agent reinforcement learning model for inventory transshipments under supply chain disruption

强化学习 计算机科学 供应链 转运(资讯保安) 弹性(材料科学) 信息共享 多智能体系统 基于Agent的模型 供应链管理 运筹学 过程管理 风险分析(工程) 业务 人工智能 计算机安全 物理 工程类 万维网 营销 热力学
作者
Byeongmok Kim,Jong Gwang Kim,Seokcheon Lee
出处
期刊:IISE transactions [Taylor & Francis]
卷期号:56 (7): 715-728 被引量:11
标识
DOI:10.1080/24725854.2023.2217248
摘要

AbstractAbstractThe COVID-19 pandemic has significantly disrupted global Supply Chains (SCs), emphasizing the importance of SC resilience, which refers to the ability of SCs to return to their original or more desirable state following disruptions. This study focuses on collaboration, a key component of SC resilience, and proposes a novel collaborative structure that incorporates a fictitious agent to manage inventory transshipment decisions between retailers in a centralized manner while maintaining the retailers' autonomy in ordering. The proposed collaborative structure offers the following advantages from SC resilience and operational perspectives: (i) it facilitates decision synchronization for enhanced collaboration among retailers, and (ii) it allows retailers to collaborate without the need for information sharing, addressing the potential issue of information sharing reluctance. Additionally, this study employs non-stationary probability to capture the deeply uncertain nature of the ripple effect and the highly volatile customer demand caused by the pandemic. A new Reinforcement Learning (RL) algorithm is developed to handle non-stationary environments and to implement the proposed collaborative structure. Experimental results demonstrate that the proposed collaborative structure using the new RL algorithm achieves superior SC resilience compared with centralized inventory management systems with transshipment and decentralized inventory management systems without transshipment using traditional RL algorithms.Keywords: Pandemicsupply chainripple effectdeep uncertaintylong-lasting crisisresiliencecollaborationtransshipmentmulti-agent reinforcement learning Data availability statementThe data that support the findings of this study can be generated by using a code openly available in GitHub at https://github.com/Byeongmok/multiagentRL (Kim, 2023).Additional informationNotes on contributorsByeongmok KimByeongmok Kim is currently pursuing his PhD in the School of Industrial Engineering at Purdue University (West Lafayette, IN, USA). He earned his BS degree in Industrial Engineering from Hongik University (Seoul, South Korea) and his M.S. degree in Industrial and Management Engineering from POSTECH (Pohang, South Korea). Prior to entering Purdue University, he worked as a research engineer at LG Electronics and Hyundai Steel. His research interests encompass the application of operations research in manufacturing, logistics, supply chain management, and autonomous robotic delivery.Jong Gwang KimJong Gwang Kim is a PhD student in the School of Industrial Engineering at Purdue University. He received his Master's degree in Applied Mathematics from Columbia University and Bachelor's degrees in Business Administration and Economics from Yonsei University (Korea). His research focuses on the theory and computational aspects of algorithms for large-scale constrained optimization, with applications in game theory, operations research, and machine learning.Seokcheon LeeSeokcheon Lee received his BS and MS degrees in Industrial Engineering from Seoul National University (Seoul, South Korea) in 1991 and 1993, respectively, and his PhD degree in Industrial Engineering from Pennsylvania State University (PA, USA) in 2005. He is currently a professor in the School of Industrial Engineering at Purdue University (West Lafayette, IN, USA). His current research interests include optimization techniques from multidisciplinary perspectives and distributed control for logistics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
行稳致远完成签到,获得积分10
刚刚
CDX完成签到 ,获得积分10
1秒前
2秒前
朝气完成签到,获得积分10
2秒前
2秒前
行稳致远发布了新的文献求助10
3秒前
科研通AI5应助勤奋的金毛采纳,获得10
3秒前
再夕予发布了新的文献求助10
4秒前
5秒前
科研通AI5应助咸鱼采纳,获得30
5秒前
Mia完成签到,获得积分10
5秒前
5秒前
TYMX完成签到,获得积分10
6秒前
6秒前
8秒前
8秒前
卡布发布了新的文献求助10
8秒前
殷勤的盼秋完成签到,获得积分20
9秒前
grip发布了新的文献求助10
9秒前
sgt发布了新的文献求助10
10秒前
hhh1发布了新的文献求助10
10秒前
10秒前
10秒前
咖可乐完成签到,获得积分10
10秒前
科研通AI5应助小库里2025采纳,获得10
11秒前
认真的adai发布了新的文献求助10
11秒前
11秒前
12秒前
大个应助十一采纳,获得10
12秒前
年轻的听露完成签到,获得积分10
12秒前
科研通AI2S应助有问题采纳,获得10
12秒前
OIC发布了新的文献求助10
13秒前
13秒前
Tw完成签到,获得积分10
13秒前
islazheng发布了新的文献求助10
13秒前
陈林的爹发布了新的文献求助10
13秒前
14秒前
华仔应助卡布采纳,获得10
15秒前
Wk_Ye发布了新的文献求助10
15秒前
科研助手6应助阻击兽采纳,获得10
15秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 1500
Izeltabart tapatansine - AdisInsight 800
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3772271
求助须知:如何正确求助?哪些是违规求助? 3317649
关于积分的说明 10186966
捐赠科研通 3032802
什么是DOI,文献DOI怎么找? 1663732
邀请新用户注册赠送积分活动 795908
科研通“疑难数据库(出版商)”最低求助积分说明 757100