A multi-agent reinforcement learning model for inventory transshipments under supply chain disruption

强化学习 计算机科学 供应链 转运(资讯保安) 弹性(材料科学) 信息共享 多智能体系统 基于Agent的模型 供应链管理 运筹学 过程管理 风险分析(工程) 业务 人工智能 计算机安全 物理 工程类 万维网 营销 热力学
作者
Byeongmok Kim,Jong Gwang Kim,Seokcheon Lee
出处
期刊:IISE transactions [Informa]
卷期号:56 (7): 715-728 被引量:8
标识
DOI:10.1080/24725854.2023.2217248
摘要

AbstractAbstractThe COVID-19 pandemic has significantly disrupted global Supply Chains (SCs), emphasizing the importance of SC resilience, which refers to the ability of SCs to return to their original or more desirable state following disruptions. This study focuses on collaboration, a key component of SC resilience, and proposes a novel collaborative structure that incorporates a fictitious agent to manage inventory transshipment decisions between retailers in a centralized manner while maintaining the retailers' autonomy in ordering. The proposed collaborative structure offers the following advantages from SC resilience and operational perspectives: (i) it facilitates decision synchronization for enhanced collaboration among retailers, and (ii) it allows retailers to collaborate without the need for information sharing, addressing the potential issue of information sharing reluctance. Additionally, this study employs non-stationary probability to capture the deeply uncertain nature of the ripple effect and the highly volatile customer demand caused by the pandemic. A new Reinforcement Learning (RL) algorithm is developed to handle non-stationary environments and to implement the proposed collaborative structure. Experimental results demonstrate that the proposed collaborative structure using the new RL algorithm achieves superior SC resilience compared with centralized inventory management systems with transshipment and decentralized inventory management systems without transshipment using traditional RL algorithms.Keywords: Pandemicsupply chainripple effectdeep uncertaintylong-lasting crisisresiliencecollaborationtransshipmentmulti-agent reinforcement learning Data availability statementThe data that support the findings of this study can be generated by using a code openly available in GitHub at https://github.com/Byeongmok/multiagentRL (Kim, 2023).Additional informationNotes on contributorsByeongmok KimByeongmok Kim is currently pursuing his PhD in the School of Industrial Engineering at Purdue University (West Lafayette, IN, USA). He earned his BS degree in Industrial Engineering from Hongik University (Seoul, South Korea) and his M.S. degree in Industrial and Management Engineering from POSTECH (Pohang, South Korea). Prior to entering Purdue University, he worked as a research engineer at LG Electronics and Hyundai Steel. His research interests encompass the application of operations research in manufacturing, logistics, supply chain management, and autonomous robotic delivery.Jong Gwang KimJong Gwang Kim is a PhD student in the School of Industrial Engineering at Purdue University. He received his Master's degree in Applied Mathematics from Columbia University and Bachelor's degrees in Business Administration and Economics from Yonsei University (Korea). His research focuses on the theory and computational aspects of algorithms for large-scale constrained optimization, with applications in game theory, operations research, and machine learning.Seokcheon LeeSeokcheon Lee received his BS and MS degrees in Industrial Engineering from Seoul National University (Seoul, South Korea) in 1991 and 1993, respectively, and his PhD degree in Industrial Engineering from Pennsylvania State University (PA, USA) in 2005. He is currently a professor in the School of Industrial Engineering at Purdue University (West Lafayette, IN, USA). His current research interests include optimization techniques from multidisciplinary perspectives and distributed control for logistics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lightman发布了新的文献求助10
1秒前
pluto应助winnie采纳,获得10
3秒前
领导范儿应助xinyuxxx采纳,获得10
4秒前
东华发布了新的文献求助30
4秒前
高翔发布了新的文献求助10
4秒前
tanglu发布了新的文献求助10
4秒前
xw完成签到,获得积分10
5秒前
666发布了新的文献求助10
5秒前
牛奶开水完成签到 ,获得积分10
8秒前
隐形曼青应助暴躁小兔采纳,获得10
9秒前
邓云峰888完成签到,获得积分10
10秒前
赘婿应助专注棒棒糖采纳,获得10
10秒前
666完成签到,获得积分20
11秒前
csy完成签到 ,获得积分10
11秒前
充电宝应助收到采纳,获得30
11秒前
BiuBiuBiu完成签到 ,获得积分10
12秒前
思源应助仙林AK47采纳,获得20
12秒前
幸福大白发布了新的文献求助30
15秒前
bkagyin应助啦啦采纳,获得10
16秒前
17秒前
Harper完成签到,获得积分10
17秒前
香蕉觅云应助谛因采纳,获得10
19秒前
李健应助彭凯采纳,获得10
21秒前
大方听云完成签到 ,获得积分20
21秒前
彭于晏应助蝶步韶华采纳,获得10
22秒前
小小虾完成签到,获得积分10
22秒前
充电宝应助秋惜灵采纳,获得10
23秒前
24秒前
25秒前
tianyy完成签到,获得积分10
26秒前
28秒前
CuteG完成签到 ,获得积分10
28秒前
tianyy发布了新的文献求助10
30秒前
万能图书馆应助Felix采纳,获得10
31秒前
幸福大白完成签到,获得积分10
31秒前
amlzh应助阿阿阿阿冀采纳,获得10
31秒前
WZQ完成签到,获得积分10
32秒前
33秒前
司马含卉完成签到,获得积分10
34秒前
36秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3461359
求助须知:如何正确求助?哪些是违规求助? 3055047
关于积分的说明 9046247
捐赠科研通 2744983
什么是DOI,文献DOI怎么找? 1505792
科研通“疑难数据库(出版商)”最低求助积分说明 695820
邀请新用户注册赠送积分活动 695264