亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A multi-agent reinforcement learning model for inventory transshipments under supply chain disruption

强化学习 计算机科学 供应链 转运(资讯保安) 弹性(材料科学) 信息共享 多智能体系统 基于Agent的模型 供应链管理 运筹学 过程管理 风险分析(工程) 业务 人工智能 计算机安全 物理 工程类 万维网 营销 热力学
作者
Byeongmok Kim,Jong Gwang Kim,Seokcheon Lee
出处
期刊:IISE transactions [Informa]
卷期号:56 (7): 715-728 被引量:12
标识
DOI:10.1080/24725854.2023.2217248
摘要

AbstractAbstractThe COVID-19 pandemic has significantly disrupted global Supply Chains (SCs), emphasizing the importance of SC resilience, which refers to the ability of SCs to return to their original or more desirable state following disruptions. This study focuses on collaboration, a key component of SC resilience, and proposes a novel collaborative structure that incorporates a fictitious agent to manage inventory transshipment decisions between retailers in a centralized manner while maintaining the retailers' autonomy in ordering. The proposed collaborative structure offers the following advantages from SC resilience and operational perspectives: (i) it facilitates decision synchronization for enhanced collaboration among retailers, and (ii) it allows retailers to collaborate without the need for information sharing, addressing the potential issue of information sharing reluctance. Additionally, this study employs non-stationary probability to capture the deeply uncertain nature of the ripple effect and the highly volatile customer demand caused by the pandemic. A new Reinforcement Learning (RL) algorithm is developed to handle non-stationary environments and to implement the proposed collaborative structure. Experimental results demonstrate that the proposed collaborative structure using the new RL algorithm achieves superior SC resilience compared with centralized inventory management systems with transshipment and decentralized inventory management systems without transshipment using traditional RL algorithms.Keywords: Pandemicsupply chainripple effectdeep uncertaintylong-lasting crisisresiliencecollaborationtransshipmentmulti-agent reinforcement learning Data availability statementThe data that support the findings of this study can be generated by using a code openly available in GitHub at https://github.com/Byeongmok/multiagentRL (Kim, 2023).Additional informationNotes on contributorsByeongmok KimByeongmok Kim is currently pursuing his PhD in the School of Industrial Engineering at Purdue University (West Lafayette, IN, USA). He earned his BS degree in Industrial Engineering from Hongik University (Seoul, South Korea) and his M.S. degree in Industrial and Management Engineering from POSTECH (Pohang, South Korea). Prior to entering Purdue University, he worked as a research engineer at LG Electronics and Hyundai Steel. His research interests encompass the application of operations research in manufacturing, logistics, supply chain management, and autonomous robotic delivery.Jong Gwang KimJong Gwang Kim is a PhD student in the School of Industrial Engineering at Purdue University. He received his Master's degree in Applied Mathematics from Columbia University and Bachelor's degrees in Business Administration and Economics from Yonsei University (Korea). His research focuses on the theory and computational aspects of algorithms for large-scale constrained optimization, with applications in game theory, operations research, and machine learning.Seokcheon LeeSeokcheon Lee received his BS and MS degrees in Industrial Engineering from Seoul National University (Seoul, South Korea) in 1991 and 1993, respectively, and his PhD degree in Industrial Engineering from Pennsylvania State University (PA, USA) in 2005. He is currently a professor in the School of Industrial Engineering at Purdue University (West Lafayette, IN, USA). His current research interests include optimization techniques from multidisciplinary perspectives and distributed control for logistics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
安详的海风完成签到,获得积分10
刚刚
一er完成签到,获得积分20
1秒前
2秒前
sihui完成签到,获得积分10
2秒前
6秒前
栗子完成签到,获得积分10
16秒前
17秒前
18秒前
Ava应助坚强的大地采纳,获得10
19秒前
香蕉觅云应助taiyan采纳,获得10
20秒前
honey发布了新的文献求助10
23秒前
华仔应助yo采纳,获得10
24秒前
万能图书馆应助11111采纳,获得10
25秒前
30秒前
andrele发布了新的文献求助10
31秒前
32秒前
Owen应助文艺怀蝶采纳,获得10
32秒前
lilili完成签到 ,获得积分10
34秒前
36秒前
37秒前
taiyan发布了新的文献求助10
38秒前
1nooooo完成签到 ,获得积分10
38秒前
杨江华完成签到,获得积分10
42秒前
又甘又刻发布了新的文献求助10
43秒前
11111发布了新的文献求助10
43秒前
yo发布了新的文献求助10
44秒前
sihui发布了新的文献求助10
44秒前
orixero应助honey采纳,获得10
47秒前
Magali发布了新的文献求助10
52秒前
小二郎应助狂野的衬衫采纳,获得10
55秒前
Broadway Zhang完成签到,获得积分10
56秒前
嘿嘿应助江氏巨颏虎采纳,获得10
57秒前
1分钟前
1分钟前
1分钟前
CC完成签到 ,获得积分10
1分钟前
1分钟前
俭朴寄文发布了新的文献求助30
1分钟前
andrele发布了新的文献求助10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5595676
求助须知:如何正确求助?哪些是违规求助? 4680968
关于积分的说明 14818069
捐赠科研通 4651636
什么是DOI,文献DOI怎么找? 2535574
邀请新用户注册赠送积分活动 1503527
关于科研通互助平台的介绍 1469754