亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A multi-agent reinforcement learning model for inventory transshipments under supply chain disruption

强化学习 计算机科学 供应链 转运(资讯保安) 弹性(材料科学) 信息共享 多智能体系统 基于Agent的模型 供应链管理 运筹学 过程管理 风险分析(工程) 业务 人工智能 计算机安全 物理 工程类 万维网 营销 热力学
作者
Byeongmok Kim,Jong Gwang Kim,Seokcheon Lee
出处
期刊:IISE transactions [Informa]
卷期号:56 (7): 715-728 被引量:12
标识
DOI:10.1080/24725854.2023.2217248
摘要

AbstractAbstractThe COVID-19 pandemic has significantly disrupted global Supply Chains (SCs), emphasizing the importance of SC resilience, which refers to the ability of SCs to return to their original or more desirable state following disruptions. This study focuses on collaboration, a key component of SC resilience, and proposes a novel collaborative structure that incorporates a fictitious agent to manage inventory transshipment decisions between retailers in a centralized manner while maintaining the retailers' autonomy in ordering. The proposed collaborative structure offers the following advantages from SC resilience and operational perspectives: (i) it facilitates decision synchronization for enhanced collaboration among retailers, and (ii) it allows retailers to collaborate without the need for information sharing, addressing the potential issue of information sharing reluctance. Additionally, this study employs non-stationary probability to capture the deeply uncertain nature of the ripple effect and the highly volatile customer demand caused by the pandemic. A new Reinforcement Learning (RL) algorithm is developed to handle non-stationary environments and to implement the proposed collaborative structure. Experimental results demonstrate that the proposed collaborative structure using the new RL algorithm achieves superior SC resilience compared with centralized inventory management systems with transshipment and decentralized inventory management systems without transshipment using traditional RL algorithms.Keywords: Pandemicsupply chainripple effectdeep uncertaintylong-lasting crisisresiliencecollaborationtransshipmentmulti-agent reinforcement learning Data availability statementThe data that support the findings of this study can be generated by using a code openly available in GitHub at https://github.com/Byeongmok/multiagentRL (Kim, 2023).Additional informationNotes on contributorsByeongmok KimByeongmok Kim is currently pursuing his PhD in the School of Industrial Engineering at Purdue University (West Lafayette, IN, USA). He earned his BS degree in Industrial Engineering from Hongik University (Seoul, South Korea) and his M.S. degree in Industrial and Management Engineering from POSTECH (Pohang, South Korea). Prior to entering Purdue University, he worked as a research engineer at LG Electronics and Hyundai Steel. His research interests encompass the application of operations research in manufacturing, logistics, supply chain management, and autonomous robotic delivery.Jong Gwang KimJong Gwang Kim is a PhD student in the School of Industrial Engineering at Purdue University. He received his Master's degree in Applied Mathematics from Columbia University and Bachelor's degrees in Business Administration and Economics from Yonsei University (Korea). His research focuses on the theory and computational aspects of algorithms for large-scale constrained optimization, with applications in game theory, operations research, and machine learning.Seokcheon LeeSeokcheon Lee received his BS and MS degrees in Industrial Engineering from Seoul National University (Seoul, South Korea) in 1991 and 1993, respectively, and his PhD degree in Industrial Engineering from Pennsylvania State University (PA, USA) in 2005. He is currently a professor in the School of Industrial Engineering at Purdue University (West Lafayette, IN, USA). His current research interests include optimization techniques from multidisciplinary perspectives and distributed control for logistics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助爱笑的傲晴采纳,获得10
5秒前
14秒前
17秒前
19秒前
23秒前
28秒前
44秒前
科研通AI6应助lemon采纳,获得30
48秒前
59秒前
1分钟前
KINGAZX完成签到 ,获得积分10
1分钟前
hahha发布了新的文献求助10
1分钟前
1分钟前
圆圆901234发布了新的文献求助10
1分钟前
英俊的铭应助hahha采纳,获得10
1分钟前
1分钟前
LHL完成签到,获得积分10
1分钟前
LeslieHu发布了新的文献求助10
1分钟前
1分钟前
圆圆901234完成签到,获得积分10
1分钟前
null应助科研通管家采纳,获得10
1分钟前
null应助科研通管家采纳,获得10
1分钟前
null应助科研通管家采纳,获得10
1分钟前
null应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得30
1分钟前
null应助科研通管家采纳,获得10
1分钟前
null应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
笨笨的怜雪完成签到 ,获得积分10
1分钟前
mumu发布了新的文献求助10
1分钟前
2分钟前
万能图书馆应助mumu采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
inRe发布了新的文献求助10
2分钟前
3分钟前
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Bone Marrow Immunohistochemistry 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5628241
求助须知:如何正确求助?哪些是违规求助? 4716158
关于积分的说明 14963847
捐赠科研通 4785915
什么是DOI,文献DOI怎么找? 2555467
邀请新用户注册赠送积分活动 1516748
关于科研通互助平台的介绍 1477316