Non-unimodal and non-concave relationships in the network Macroscopic Fundamental Diagram caused by hierarchical streets

等级制度 同种类的 布线(电子设计自动化) 流量网络 图表 计算机科学 街道网 流量(计算机网络) 分级控制系统 拓扑(电路) 运输工程 数学优化 数学 控制(管理) 工程类 计算机网络 人工智能 经济 组合数学 数据库 市场经济
作者
Guanhao Xu,Vikash V. Gayah
出处
期刊:Transportation Research Part B-methodological [Elsevier]
卷期号:173: 203-227 被引量:11
标识
DOI:10.1016/j.trb.2023.05.002
摘要

Unimodal, concave relationships between average network productivity and accumulation or density aggregated across spatially compact regions of urban networks—so called network Macroscopic Fundamental Diagrams (MFDs)—have recently been shown to exist on homogeneous street networks. When present, MFD relationships facilitate the modeling of traffic congestion at a regional level and have led to the development of various regional traffic control strategies. However, real street networks are not homogeneous—they generally have a hierarchical structure where some streets (e.g., arterials) promote higher mobility than others (e.g., local roads). This paper examines how the presence of hierarchical roadway structures may potentially cause non-unimodal patterns in a network's MFD. These are observed using three types of tools: analytical models of simple network structures, simulations of various idealized roadway networks, and empirical data. The impacts of street hierarchy depend on how vehicles use different roadway types to move within the network; i.e., their routing strategy. The findings suggest that the presence of roadway hierarchies may lead to MFDs that have non-unimodal or non-concave patterns on the free-flow branch when vehicles route themselves according to user equilibrium principles, which is closest to what would be observed in realistic situations. Such patterns are contrary to what is traditionally assumed in most MFD-based modeling frameworks. However, the unimodal and concave MFD should be expected under system optimal routing conditions that maximize network productivity for a given traffic state.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
o我不是高手完成签到,获得积分10
刚刚
隐形曼青应助BONBON采纳,获得10
刚刚
刚刚
Y20关闭了Y20文献求助
1秒前
1秒前
1秒前
。墨殇完成签到,获得积分20
1秒前
ohhh完成签到,获得积分10
2秒前
咖飞发布了新的文献求助10
2秒前
anan发布了新的文献求助10
2秒前
2秒前
2秒前
2401发布了新的文献求助10
2秒前
3秒前
3秒前
黑暗系发布了新的文献求助10
3秒前
Akim应助lyyt采纳,获得10
3秒前
3秒前
小猪猪完成签到,获得积分20
4秒前
NexusExplorer应助笑嘻嘻采纳,获得10
4秒前
lisaltp发布了新的文献求助10
4秒前
4秒前
易拉罐发布了新的文献求助10
6秒前
一只小羊发布了新的文献求助10
6秒前
6秒前
顾矜应助尊敬的惠采纳,获得10
7秒前
7秒前
充电宝应助成就小懒虫采纳,获得10
7秒前
谷粱发布了新的文献求助10
7秒前
阳子发布了新的文献求助10
8秒前
预防大神完成签到,获得积分10
8秒前
LYL发布了新的文献求助10
10秒前
1.1发布了新的文献求助10
10秒前
张家璐完成签到,获得积分10
10秒前
hyl-tcm完成签到 ,获得积分10
10秒前
11秒前
12秒前
黑暗系发布了新的文献求助10
12秒前
Zn应助高大的曼寒采纳,获得10
13秒前
唐寒松发布了新的文献求助10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3543600
求助须知:如何正确求助?哪些是违规求助? 3120949
关于积分的说明 9344906
捐赠科研通 2818967
什么是DOI,文献DOI怎么找? 1549876
邀请新用户注册赠送积分活动 722316
科研通“疑难数据库(出版商)”最低求助积分说明 713126